Weak	order	and	simple	reflections

Subword complexes

Pipe dreams

Extension to Coxeter groups 0 00

EL OQO

イロト イ押ト イヨト イヨト

Lattice quotients of weak order intervals in subword complexes

Noémie Cartier

16 mai 2023

Joint work with :

Nantel Bergeron Cesar Ceballos Vincent Pilaud

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
• • • •	000 00000	000 0000	
The weak order on permutations			

Inversions of $\omega \in \mathfrak{S}_n$: i < j and $\omega^{-1}(i) > \omega^{-1}(j) \rightarrow (1,2)$ in 24135

ショット 本語 マ キョッ 本語 ママク

Right weak order on permutations : $\pi \leq \omega \iff inv(\pi) \subseteq inv(\omega)$

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Noémie Cartier

Right weak order on permutations : $\pi \leq \omega \iff inv(\pi) \subseteq inv(\omega)$

イロト イロト イヨト イヨト

Theorem

The weak order on \mathfrak{S}_n is a **lattice**.

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
○● ○	000 00000	000 0000	
The weak order on permutations			

 $UabV \lessdot UbaV$ $31245 \lt 31425$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
○ ● ○	000 00000	000 0000	
The weak order on permutations			

 $UabV \lessdot UbaV$ $31245 \lessdot 31425$

 $\omega \lessdot \omega \tau_i$ with $\omega(i) \lt \omega(i+1)$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
○ ● ○	000 00000	000 0000	
The weak order on permutations			

 $UabV \lessdot UbaV$ $31245 \lessdot 31425$

 $\omega \lessdot \omega \tau_i$ with $\omega(i) \lt \omega(i+1)$

 \Rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leq i < n\}$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
○ ● ○	000 00000	000 0000	
The weak order on permutations			

 $UabV \lessdot UbaV$ $31245 \lessdot 31425$

 $\omega \lessdot \omega \tau_i$ with $\omega(i) \lt \omega(i+1)$

 \Rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leq i < n\}$

Crossing network \leftrightarrow simple reflections product

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00 •	000 00000	000 0000	
Words on simple reflections			

Properties of words on S:

• minimal length for $\omega : \ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00 •	000 00000	000 0000	
Words on simple reflections			

Properties of words on S:

- minimal length for $\omega : \ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)
- $\pi \leqslant \omega$ iff $\omega = \pi \sigma$ and $\ell(\omega) = \ell(\pi) + \ell(\sigma) : \pi$ is a **prefix** of ω

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00 •	000 00000	000 0000	
Words on simple reflections			

Properties of words on S :

- minimal length for $\omega : \ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)
- $\pi \leqslant \omega$ iff $\omega = \pi \sigma$ and $\ell(\omega) = \ell(\pi) + \ell(\sigma) : \pi$ is a **prefix** of ω
- if $\pi \leq \omega$ then any reduced expression of ω has a reduced expression of π as a **subword**

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00 •	000 00000	000 0000	
Words on simple reflections			

Properties of words on S :

- minimal length for $\omega : \ell(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)
- $\pi \leqslant \omega$ iff $\omega = \pi \sigma$ and $\ell(\omega) = \ell(\pi) + \ell(\sigma) : \pi$ is a **prefix** of ω
- if $\pi \leq \omega$ then any reduced expression of ω has a reduced expression of π as a **subword**

Reduction to minimal length :

(日) (周) (三) (三) (三) (0)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	• 00 00000	000 0000	
Subwords and flips			

Fix Q word on $S, \omega \in \mathfrak{S}_n$

 $\mathsf{SC}(Q,\omega)$ the **subword complex** on Q representing ω :

- base set : indices of Q
- \blacksquare faces : complementaries of indices sets containing an expression of ω

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	• 00 00000	000 0000	
Subwords and flips			

Fix Q word on S, $\omega \in \mathfrak{S}_n$

 $\mathsf{SC}(\mathcal{Q},\omega)$ the $\mathbf{subword}\ \mathbf{complex}$ on \mathcal{Q} representing ω :

base set : indices of Q

 \blacksquare faces : complementaries of indices sets containing an expression of ω

An example :

Facet $\{1, 2, 3, 8, 9\}$ of SC $(\tau_4 \tau_3 \tau_2 \tau_1 \tau_4 \tau_3 \tau_2 \tau_4 \tau_3 \tau_4, 25143)$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000	
Subwords and flips			

Fix Q word on S, $\omega \in \mathfrak{S}_n$ SC (Q, ω) the **subword complex** on Q representing ω :

■ base set : indices of Q

 \blacksquare faces : complementaries of indices sets containing an expression of ω

An example :

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00	000	000	
Subwords and flips			

Structure given by **flips** : from one facet to another

(日)

= 900

- ∢ ∃ ▶

Noémie Cartier

Weak order and simple reflections 00 0	Subword complexes ○○○ ●○○○○	Pipe dreams 000 0000	Extension to Coxeter groups 0 00
A very special case			
Q : triangular word	and ω	$= 1 n (n-1) \ldots$. 2

・

Noémie Cartier

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

 \Rightarrow this is the Tamari lattice!

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
A very special case			

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00●00	000 0000	
A very special case			

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 000●0	000 0000	
A very special case			

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 000●0	000 0000	
A very special case			

A binary tree appears on the pipe dream \rightarrow bijection

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
A very special case			

EL OQO

.

< □ > < 凸

A binary tree appears on the pipe dream \rightarrow bijection

Tree rotations \equiv flips \rightarrow lattice isomorphism (Woo, 2004)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 0000●	000 0000	
A very special case			

The Tamari lattice is a **lattice quotient** of the weak order lattice (binary search trees insertion algorithm)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
A very special case			

The Tamari lattice is a **lattice quotient** of the weak order lattice (binary search trees insertion algorithm)

 \Rightarrow so is the flip order on this subword complex

 \Rightarrow lattice morphism : BST insertion \iff pipes insertion

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
A very special case			

The Tamari lattice is a **lattice quotient** of the weak order lattice (binary search trees insertion algorithm)

 \Rightarrow so is the flip order on this subword complex

 \Rightarrow lattice morphism : BST insertion \iff pipes insertion

Can we find other lattice quotients of parts of the weak order with pipe dreams?

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Triangular pipe dreams			

▲日▼▲園▼▲国▼▲国▼ 釣A⊙

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
		000	
	00000	0000	00
Triangular pipe dreams			

Contact graph :

- vertices : pipes
- edges : from a to b if a -b appears in the picture

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	● 00 0000	
Triangular pipe dreams			

Contact graph :

- vertices : pipes
- edges : from a to b if a b appears in the picture

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	• 00 0000	
Triangular pipe dreams			

Contact graph :

- vertices : pipes
- edges : from a to b if a -b appears in the picture

Why look at this?

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	● 00 0000	
Triangular pipe dreams			

Contact graph :

- vertices : pipes
- edges : from a to b if a b appears in the picture

Why look at this?

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三国社 ののの

Acyclic contact graph \iff vertex of the **brick polytope**

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
0	00000	0000	
Triangular pipe dreams			

Restriction : only consider the set of acyclic pipe dreams $\Pi(\omega)$

- \rightarrow from permutations to pipe dreams : contact graph extensions
- \rightarrow domain of the application : weak order interval [id, ω]
- \rightarrow name of the application : Ins_{ω}

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00 0	000 00000	000 0000	
Triangular pipe dreams			

Restriction : only consider the set of acyclic pipe dreams $\Pi(\omega)$

- \rightarrow from permutations to pipe dreams : contact graph extensions
- \rightarrow domain of the application : weak order interval [id, ω]
- \rightarrow name of the application : Ins_{ω}

Theorem (Bergeron, C., Ceballos, Pilaud)

For any $\omega \in \mathfrak{S}_n$, the set $\Pi(\omega)$ of **acyclic pipe dreams** of exit permutation ω , ordered by ascending flips, is a **lattice quotient** of the **weak order interval** [id, ω].

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
∪ Triangular pipe dreams	00000	0000	00

Restriction : only consider the set of acyclic pipe dreams $\Pi(\omega)$

- \rightarrow from permutations to pipe dreams : contact graph extensions
- \rightarrow domain of the application : weak order interval [id, ω]
- \rightarrow name of the application : Ins_ω

Theorem (Bergeron, C., Ceballos, Pilaud)

For any $\omega \in \mathfrak{S}_n$, the set $\Pi(\omega)$ of acyclic pipe dreams of exit permutation ω , ordered by ascending flips, is a **lattice quotient** of the **weak order interval** [id, ω].

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two algorithms to compute the morphism :

- insertion algorithm (pipe by pipe)
- sweeping algorithm (cell by cell)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Triangular pipe dreams			

An example : $\omega = 31542$

◆□▶ ◆□▶ ◆目▶ ◆目▼ 少へ⊙

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	00000	0000	00
Generalized pipe dreams			

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 ● 000	
Generalized pipe dreams			

alternating crossing networks \leftrightarrow *n*-shapes

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	00000	0000	00
Ceneralized nine dreams			

alternating crossing networks \leftrightarrow *n*-shapes

n-shapes

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Generalized pipe dreams			

alternating crossing networks \leftrightarrow *n*-shapes

 $Ins_{F,\omega}$ is still well defined, BUT...

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Generalized pipe dreams			

 $Ins_{F,\omega}$ is still well defined, BUT...

- some linear extensions can be outside of $[id, \omega]$
- the ascending flips are not always in the image of the weak order

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Generalized pipe dreams			

 $Ins_{F,\omega}$ is still well defined, BUT...

- some linear extensions can be outside of $[id, \omega]$
- the ascending flips are not always in the image of the weak order

Restrictions :

- only consider strongly acyclic pipe dreams
- order on pipe dreams : acyclic order (weaker than flip order)

= 900

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Generalized pipe dreams			

Theorem (C.)

For any n-shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the map $\operatorname{Ins}_{F,\omega}$ is a lattice **morphism** from the **weak order interval** [id, ω] to the strongly acyclic pipe dreams ordered by the acyclic order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000	000	0
Generalized pipe dreams	00000	0000	

Theorem (C.)

For any n-shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the map $\operatorname{Ins}_{F,\omega}$ is a **lattice morphism** from the **weak order interval** [id, ω] to the **strongly acyclic** pipe dreams ordered by the **acyclic order**.

Theorem

Noémie Cartier

If the maximal permutation $\omega_0 = n(n-1) \dots 21$ is sortable on *F*, then any linear extension of a pipe dream on *F* with exit permutation ω is in [id, ω], and **all acyclic pipe dreams are strongly acyclic**.

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	
Generalized pipe dreams			

An example : $\omega = 31524$

▲□▶▲圖▶▲≣▶▲≣▶ ≣目 のQ@

Noémie Cartier

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
00 0	000 00000	000 0000	• •
A similar framework			

Further generalization : Coxeter groups

symmetric group \mathfrak{S}_n	Coxeter group W	
simple transpositions	simple reflections	
subword c	omplexes	
pair of pipes	root in Φ	
P#	root cone	
$\pi \in lin(P)$	root conf. $\subseteq \pi(\Phi^+)$	

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	● ● ○
Work in progress			

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	○ ●O
Work in progress			

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $lns_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn & Stump 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $Ins_Q(w, \cdot)$ is **surjective on acyclic facets** of SC(Q, w).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000 00000	000 0000	○ ●O
Work in progress			

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $Ins_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn & Stump 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $Ins_Q(w, \cdot)$ is surjective on acyclic facets of SC(Q, w).

Conjecture

If Q is an alternating word on S and $w \in W$ is sortable on Q, then the application $Ins_{Q,w} : [e, w] \mapsto SC(Q, w)$ is a **lattice morphism** from the left weak order on [e, w] to its image.

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups
	000	000	0
Work in progress	00000	0000	

Thank you for your attention !

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Q a word on S seen as a crossing network, here $\omega = \omega_0 = n(n-1) \dots 1$

Noémie Cartier Lattice quotients of weak order intervals in subword complexes

Q a word on S seen as a crossing network, here $\omega = \omega_0 = \mathit{n}(\mathit{n}-1) \dots 1$

bricks of *Q* : bounded cells

Q a word on S seen as a crossing network, here $\omega = \omega_0 = n(n-1)\dots 1$

- **bricks** of *Q* : bounded cells
- brick vector of f ∈ SC(Q, ω) : ith coordinate is the number of bricks under pipe i

Lattice quotients of weak order intervals in subword complexes

Noémie Cartier

Q a word on S seen as a crossing network, here $\omega = \omega_0 = n(n-1) \dots 1$

- **bricks** of *Q* : bounded cells
- brick vector of f ∈ SC(Q, ω) : ith coordinate is the number of bricks under pipe i

Q a word on S seen as a crossing network, here $\omega = \omega_0 = n(n-1) \dots 1$

- bricks of Q : bounded cells
- brick vector of f ∈ SC(Q, ω) : ith coordinate is the number of bricks under pipe i

brick polytope of $SC(Q, \omega)$: convex hull of brick vectors of facets

- < ロ > < 個 > < 目 > < 目 > 三日 = の < ④

Noémie Cartier Lattice quotients of weak order intervals in subword complexes

Noémie Cartier

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆

Noémie Cartier

1 if $\omega^{-1}(i) < \omega^{-1}(j)$, add an elbow \checkmark

2 if $\omega^{-1}(i) > \omega^{-1}(j)$ and $\pi^{-1}(i) > \pi^{-1}(j)$, add a cross +

3 if *i*, *j* inversion of ω and non-inversion of π , add an elbow \checkmark if you can still make the pipes end in order ω that way (3a), and a cross + otherwise (3b)

Noémie Cartier

(日) (周) (三) (三) (三) (0)

Insertion algorithm for $\omega = 3241$ and $\pi = 2134$

The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

(日) (周) (三) (三) (三) (0)

Insertion algorithm for $\omega = 3241$ and $\pi = 2134$

The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Noémie Cartier

The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Noémie Cartier

Lattice quotients of weak order intervals in subword complexes

- ◆ □ ▶ ▲ @ ▶ ▲ 표 ▶ ▲ 표 ♥ ④ ♥ ♥

000000

An acyclic but not strongly acyclic facet :

One linear extension : $15234 \neq 31524$.

Noémie Cartier