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Section 1

Paths, for introduction
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Paths, for introduction Trees, for bijections Permutations, for extension And further...

Dyck paths and Tamari lattice, ...

Dyck path: n north(N) and n east(E) steps above the diagonal
Counted by Catalan numbers Cat(n) = 1

2n+1

(

2n+1

n

)
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Dyck paths and Tamari lattice, ...

Covering relation: take a valley •, find the next point □ with the same
distance to the diagonal ...
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Dyck paths and Tamari lattice, ...

... and push the segment to the left. This gives the Tamari lattice

Tam(n) (Tamari 1962).
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..., m-Tamari lattice, ...

z

m-ballot paths: n north steps, mn east steps, above the ”m-diagonal”.

Counted by Fuss-Catalan numbers Catm(n) = 1

mn+1

(

mn+1

n

)

.

A similar covering relation gives the m-Tamari lattice (Bergeron 2010).

Further: rational Tamari lattice (Armstrong–Rhoades–Williams 2013)
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... and beyond.

But we can use an arbitrary path ν as ”diagonal”!

Horizontal distance = # steps one can go without crossing ν

2 1

1

2

1 0

1 0

ν1 0

2 1

1 0

p

p′

E

Ezν

ν ν

1

0

Generalized Tamari lattice or ν-Tamari lattice (Préville-Ratelle and
Viennot 2014): Tam(ν) over arbitrary ν (called the canopy).
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Partitioning the Tamari lattice by type

Theorem (Préville-Ratelle–Viennot 2014)

The Tamari lattice of order n is partitioned into 2n−1 intervals, each
isomorphic to some Tam(v) with v of length n− 1.

Delest and Viennot (1984): There is a bijection between Dyck path of
length 2n and an element in Tam(ν) for some ν of length n− 1.

Theorem (Préville-Ratelle–Viennot 2014)

Tam(ν) is isomorphic to the dual of Tam(←−ν ), where ←−ν is ν reversed
with exchange N ↔ E (flipping the lattice path ν).
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Partitionning the Tamari lattice by type
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Partitionning the Tamari lattice by type
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The next level: intervals

Interval: [a, b] with comparable a ≤ b

Motivation: conjecturally related to trivariate diagonal coinvariant

spaces, also with operads... and nice numbers!

Counting with functional equations: Bostan, Bousquet-Mélou,

Chapoton, Chapuy, Chyzak, Fusy, Pilaud, Préville-Ratelle, ...

Interval poset: Chapoton, Châtel, Combes, Pons, Rognerud, ...

Planar maps: Bernardi, Bonichon, Duchi, F., Fusy, Henriet,

Humbert, Nadeau, Préville-Ratelle, ...

λ-terms and proofs: F., N. Zeilberger, ...
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Section 2

Trees, for bijections
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Binary trees

Binary trees : n binary internal nodes and n+ 1 leaves

Rotation (from left to right) :

≤

10 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Tamari intervals, with binary trees

An interval [S, T ] of binary trees

≤

Bracket vector: size of right sub-tree at each internal node in infix order

(1, 0, 0, 0) ≤ (3, 0, 0, 0)

Also distance of each up step to its matching down step in Dyck paths
(Huang–Tamari, 1972). Componentwise order ⇒ Tamari lattice.

Dual bracket vector: size of left sub-tree at each internal node

(0, 0, 2, 3) ≤ (0, 0, 1, 2)

Reversed componentwise order by duality!
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Bracket vector, a notion of matching

Bracket vector: (b1, . . . , bn), with bi the size of right sub-tree of node i

Thus, node i covers i+ 1, i+ 2, . . . , i+ bi.

Encoding in parentheses: the “opening” of i is “closed” by i+ bi.

1

2

3

4

5

6

7

8

9

10

(3, 0, 1, 0, 5, 0, 3, 0, 1, 0)

For dual bracket vector (d1, . . . , dn), node i covers i− 1, . . . , i− di.
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Tamari intervals, with plane trees

≤

Binary tree of size n ⇒ plane tree with n edges and extra root:

Remove leaves;

Left child → left sibling;

Right child → rightmost child.

≤

Bracket vector: size of sub-tree of each node in prefix order

The “opening” of a node is “closed” by the last descendant (or itself).
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Tamari intervals, three types of bijections

≤

[S, T ]: Tamari interval with S, T plane trees. Three ways for bijections:

Take T , and use S as decorations
Trees with decorations ⇔ maps (F.–Préville-Ratelle 2017, ...)
Closed flow on forests (Chapoton 2014, Chapoton–Châtel–Pons
2015, F. 2018) or parking on trees (Lackner–Panholzer 2016,
Curien–Hénard 2022)
Grafting trees (Pons 2019) or β(1, 1)-trees (Cori–Schaeffer 2003)

Mixing S and T

Interval posets (Chapoton–Châtel–Pons 2014, Châtel–Pons 2015)
Cubic coordinates (Combe 2023)
Blossoming trees (Schaeffer 1997, F.–Fusy–Nadeau 2023+)

Take S, and use T as decorations
Maps with orientation (Bernardi–Bonichon 2009)

14 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Bijections, the first way: closed flow, or parking

[S, T ]: Tamari interval with S, T plane trees
(b1, . . . , bn), (c1, . . . , cn): bracket vectors of S, T (resp.). bi ≤ ci for all i.

“Opening” of node i in S is “closed” by a descendant of i (or itself) in T .

Well-parenthesized: only need #ancestors each node “closes”

Closed flow (Chapoton–Châtel–Pons 2015):

Root-ward conserved flow, zero at root (well-parenthesized);

Each non-root node has an input flow (#ancestors “closed”);

Each non-root node consumes 1 unity of flow (its “opening”).

Tamari interval Parentheses

0

1

01

0

0

2

1

Input flow

0

1

12

0

1

3

0

Closed flow

≤

Parking on tree (Lackner–Panholzer 2016): input flow of cars parking on nodes
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Bijections, the first way: sticky trees

[S, T ]: Tamari interval with S, T plane trees

“Opening” of node i in S is “closed” by a descendant of i (or itself) in T .

Well-parenthesized: only need the furthest ancestor each node “closes”

Sticky tree (F. 2018): plane tree T with labeling ℓ

If u closes no one, then ℓ(u) = the depth of u;

Otherwise, ℓ(u) = the depth of the last ancestor it doesn’t “close”.

1

2

1

3

3

1 0

3

3

2

Tamari interval Parentheses Sticky tree
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Sticky trees and planar maps

Planar map: drawing of graphs on the plane without crossing

Rooted: with one corner of the infinite face distinguished

0

1

2

3

3

0

1
1

2

3

3

11

3 3

2

0

1

2

1

3

3

1 0

3

3

2

Sticky trees ⇒ planar bridgeless maps: “sticking” nodes of the same
label together, while keeping planarity

Well-parenthesized ⇒ planar and bridgeless

Planar bridgeless maps ⇒ sticky trees: exploration process
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Tamari intervals and planar maps

The same approach applies to several families of intervals and maps.

Intervals Formula Planar maps

General
2

n(n+ 1)

(

4n+ 1

n− 1

) bridgeless (F. 2018)

3-connected triangulation
(Bernardi–Bonichon 2009, F. 2018)

Synchronized
2

n(n+ 1)

(

3n

n− 1

)

non-separable (F.–Préville-Ratelle 2017)

New/modern
3 · 2n−2

n(n+ 1)

(

2n− 2

n− 1

)

bipartite (F. 2021)

What we can do with these direct bijections:

Refined enumeration (e.g. (F. 2021))

Symmetries (e.g. (F. 2018, F. 2021))

Links to other objects (e.g., fighting fish (Duchi–Henrient 2023) and
¼-terms (F. 2023))
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Bijections, the first way: grafting trees

[S, T ]: Tamari interval with S, T plane trees

“Closing” of node i in S was “opened” by an ancestor of i (or itself) in T .

Well-parenthesized: simply #children of each node

Grafting tree (Pons 2019), plane tree version: T and labeling ℓ such that

∀ node u, 0 ≤ ℓ(u) ≤ |Tu| −
∑

v∈Tu\{u}
ℓ(u).

ℓ(u): #descendants “opened” by u, or #children of u in S

Grafting tree β(1, 1)-tree
4

2

0

1

0

0 0

2

0

0

1
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2
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≤
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´(1, 1)-tree (Cori–Schaeffer 2003, decomposition of 3-connected cubic planar maps):
T and labeling ℓ′ such that (ℓ′(u): #descendants (or itself) not yet “opened”)

∀ node u, 1 ≤ ℓ′(u) ≤ 1 +
∑

v child of u ℓ
′(u).
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Bijections, the second way: interval posets

Bracket vector (bi)i∈[n]: right sub-tree of node i has i+ 1, . . . , i+ bi

Dual bracket vector (di)i∈[n]: left sub-tree of node i has i− 1, . . . , i− di

I = [S, T ]: Tamari interval with

(b1, . . . , bn) the bracket vector for S,

(d1, . . . , dn) the dual bracket vector for T .

Interval poset (Chapoton–Châtel–Pons 2014), (Châtel–Pons 2015): (≤I , [n]) with

For all i, we have i+ 1, . . . , i+ bi ≤I i;

For all i, we have i− 1, . . . , i− di ≤I i.

1 2 3 4 5 6 7 8

Tamari interval

≤
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8

Interval poset

Tamari condition ⇒ (≤I , [n]) goes down on both S, T , thus poset
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Applications of interval posets

1 2 3 4 5 6 7 8

Tamari interval

≤
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Interval poset

Rise-contact symmetry of m-Tamari intervals (Pons 2019)

Study of exceptional and (infinitely) modern intervals (Rognerud 2020)

Cubic coordinates for geometry of Tamari interval poset (Combe 2023)

Extended to binary relations on [n] (weak order, Hopf algebra)
(Châtel–Pilaud–Pons 2019), (Pilaud–Pons 2020)
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Bijections, the second way: blossoming trees

I = [S, T ]: Tamari interval with

(b1, . . . , bn) the bracket vector for S,

(d1, . . . , dn) the dual bracket vector for T ,

Interval poset (≤I , [n]) with i− di, . . . , i− 1, i, i+ 1, . . . , i+ bi ≤I i.

Blossoming tree (Schaeffer 1997, F.–Fusy–Nadeau 2023+): 2 buds on each node

≤

1
2
3

4

5

6
7

8

1

2
3

4

5

6

7
8

1 2 3 4 5 6 7 8

Tamari interval Covered interval

Tamari condition ⇒ no cycle, thus tree
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Blossoming tree

Tamari condition ⇒ no cycle, thus tree
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Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon–Schaeffer

2006), (Albenque–Poulalhon 2013)

Tree structure ⇒ combinatorial manipulation of generating functions

Specializes to synchronized and modern intervals, with enumerations

Easy symmetries (duality ↔ root reversing)

Combinatorial proof of a formula in (Bostan–Chyzak–Pilaud 2023+)

23 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon–Schaeffer

2006), (Albenque–Poulalhon 2013)

Tree structure ⇒ combinatorial manipulation of generating functions

Specializes to synchronized and modern intervals, with enumerations

Easy symmetries (duality ↔ root reversing)

Combinatorial proof of a formula in (Bostan–Chyzak–Pilaud 2023+)

23 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon–Schaeffer

2006), (Albenque–Poulalhon 2013)

Tree structure ⇒ combinatorial manipulation of generating functions

Specializes to synchronized and modern intervals, with enumerations

Easy symmetries (duality ↔ root reversing)

Combinatorial proof of a formula in (Bostan–Chyzak–Pilaud 2023+)

23 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon–Schaeffer

2006), (Albenque–Poulalhon 2013)

Tree structure ⇒ combinatorial manipulation of generating functions

Specializes to synchronized and modern intervals, with enumerations

Easy symmetries (duality ↔ root reversing)

Combinatorial proof of a formula in (Bostan–Chyzak–Pilaud 2023+)

23 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon–Schaeffer

2006), (Albenque–Poulalhon 2013)

Tree structure ⇒ combinatorial manipulation of generating functions

Specializes to synchronized and modern intervals, with enumerations

Easy symmetries (duality ↔ root reversing)

Combinatorial proof of a formula in (Bostan–Chyzak–Pilaud 2023+)

23 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Bijections, the third way: maps with orientation

[S, T ]: Tamari interval with S, T plane trees

“Opening” of node i in T is never (?) “closed” by a descendant of i in S.

Well-parenthesized: “closed” by a child of an ancestor, or the root

Schnyder woods without ccw cycle (Schnyder 1989), (Bernardi–Bonichon 2009):

Blue tree is S, with red buds given by T for pairing;

One tail for each node; #heads = #nodes “closed” in T ;

≤

In fact a special case of Stanley lattice, and works on Kreweras lattice.
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The case of ν-Tamari

Some of the constructions can be generalized to ¿-Tamari

Equivalent of binary trees and bracket vectors for elements
(Ceballos–Padrol–Sarmiento 2020)

Intervals in bijection with synchronized intervals (F.–Préville-Ratelle 2017),
thus bijections with maps (F.–Préville-Ratelle 2017) and fighting fish
(Duchi–Henriet 2023)

Bernardi–Bonichon generalizes to ¿-Tamari (Fusy–Humbert 2019+)

25 / 31



Paths, for introduction Trees, for bijections Permutations, for extension And further...

Section 3

Permutations, for extension
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Tamari lattice, as quotient of the weak order

Sn as a Coxeter group generated by si = (i, i+ 1)

For w ∈ Sn, ℓ(w) = min. length of factorization of w in si

(Left) weak order fweak : siw covers w iff ℓ(siw) = ℓ(w) + 1

321

312 231

132 213

123

321

132

213

123

231

Sylvester class : permutations with the same binary search tree

Only one 231-avoiding in each class. Induced order = Tamari.
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Generalizing Tamari lattice with Coxeter groups

Coxeter groups: G = ïs1, . . . , sn | (sisj)
mi,j ð with s2i = 1 and mi,j g 2.

Classification: An
∼= Sn+1, Bn, Dn, I2(p), E6, E7, E8, F4, H3, H4

Cambrian lattices (Reading 2007):

Works for all types, with combinatorial models;

On c-aligned elements, with c a Coxeter element (product of all si’s);

Different c ⇒ same #elements but not for #intervals

Further generalized to permutrees (Pilaud–Pons 2018) and m-Cambrian
lattices (Stump–Thomas–Williams 2018+).

Parabolic Tamari lattices (Mühle–Williams 2019):

Defined on parabolic quotients: GJ = G/ïsi | i ∈ Jð for J ¦ [n]

Generalize Reading’s Cambrian construction to parabolic quotients;

With combinatorial models and bijections for type A.
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Parabolic Cataland, type A

Simple model for parabolic Tamari lattices (Ceballos–F.–Mühle 2020)

5 3 4 10 1 2 7 6 9 13 14 8 11 12

Simplifies some bijections in (Mühle–Williams 2019).

Isomorphic to certain ¿-Tamari lattices.

Links to walks in the quadrant in (Bousquet-Mélou–Mishna 2010).

Solves a conjecture in (Bergeron–Ceballos–Pilaud 2022).

Recovers the zeta map in q, t-Catalan combinatorics.
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Parabolic Cataland, type B

Work in progress! (F.–Mühle–Novelli 2023+)

Split case

Join case

4 7 8 11 129 1 5 3 2 6 10 13

5 3 9 10 6 1 8 7 2 4 13 11 12

Counting in special cases

Recovers the type-C zeta map (Sulzgruber–Thiel 2018)
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Open questions

Find a natural planar map family for (unlabeled) m-Tamari intervals,
counted by (Bousquet-Mélou–Fusy–Préville-Ratelle 2011)

m+ 1

n(mn+ 1)

(

n(m+ 1)2 +m

n− 1

)

.

Bijections between (m+ 1)-constellations and greedy m-Tamari
intervals, known (Bousquet-Mélou–Chapoton 2023+) to be counted by

(m+ 2)(m+ 1)n−1

(mn+ 1)(mn+ 2)

(

(m+ 1)n

n

)

.

Prove that there are as many m-Cambrian intervals as m-Tamari
intervals (Préville-Ratelle, personal communication).
Definition of type-B ¿-Tamari lattices, at least for some ¿
(Ceballos–Padrol–Sarmiento 2020).
Enumeration of elements in the higher Stasheff–Tamari lattice
through maximal chains in Tamari lattice (Rambau 1997, Nelson–Treat 2022).
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Thank you for listening!
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