Paths, trees and permutations: some enumerative aspects of Tamari lattices

Wenjie Fang
LIGM, Université Gustave Eiffel

Workshop PAGCAP, Weissensee, Austria 16 May 2023

Section 1

Paths, for introduction

Dyck paths and Tamari lattice, ...

Dyck path: n north (N) and n east (E) steps above the diagonal Counted by Catalan numbers Cat $(n)=\frac{1}{2 n+1}\binom{2 n+1}{n}$

Dyck paths and Tamari lattice, ...

Covering relation: take a valley \bullet, find the next point \square with the same distance to the diagonal ...

Dyck paths and Tamari lattice, ...

... and push the segment to the left. This gives the Tamari lattice $\operatorname{Tam}(n)$ (Tamari 1962).

..., m-Tamari lattice, ...

m-ballot paths: n north steps, $m n$ east steps, above the " m-diagonal".
Counted by Fuss-Catalan numbers $\operatorname{Cat}_{m}(n)=\frac{1}{m n+1}\binom{m n+1}{n}$.
A similar covering relation gives the m-Tamari lattice (Bergeron 2010).
Further: rational Tamari lattice (Armstrong-Rhoades-Williams 2013)

... and beyond.

But we can use an arbitrary path ν as "diagonal"!
Horizontal distance $=\#$ steps one can go without crossing ν

Generalized Tamari lattice or ν-Tamari lattice (Préville-Ratelle and Viennot 2014): TAM (ν) over arbitrary ν (called the canopy).

Partitioning the Tamari lattice by type

Theorem (Préville-Ratelle-Viennot 2014)

The Tamari lattice of order n is partitioned into 2^{n-1} intervals, each isomorphic to some $\operatorname{TAM}(v)$ with v of length $n-1$.

Delest and Viennot (1984): There is a bijection between Dyck path of length $2 n$ and an element in $\operatorname{Tam}(\nu)$ for some ν of length $n-1$.

Theorem (Préville-Ratelle-Viennot 2014)

$\operatorname{TAM}(\nu)$ is isomorphic to the dual of $\operatorname{Tam}(\overleftarrow{\nu})$, where $\overleftarrow{\nu}$ is ν reversed with exchange $N \leftrightarrow E$ (flipping the lattice path ν).

Partitionning the Tamari lattice by type

Partitionning the Tamari lattice by type

Partitionning the Tamari lattice by type

The next level: intervals

Interval: $[a, b]$ with comparable $a \leq b$
Motivation: conjecturally related to trivariate diagonal coinvariant spaces, also with operads... and nice numbers!

- Counting with functional equations: Bostan, Bousquet-Mélou, Chapoton, Chapuy, Chyzak, Fusy, Pilaud, Préville-Ratelle, ...
- Interval poset: Chapoton, Châtel, Combes, Pons, Rognerud, ...
- Planar maps: Bernardi, Bonichon, Duchi, F., Fusy, Henriet, Humbert, Nadeau, Préville-Ratelle, ...
- λ-terms and proofs: F., N. Zeilberger, ...

Section 2

Trees, for bijections

Binary trees

Binary trees : n binary internal nodes and $n+1$ leaves

Rotation (from left to right) :

Tamari intervals, with binary trees

An interval $[S, T]$ of binary trees

Bracket vector: size of right sub-tree at each internal node in infix order

$$
(1,0,0,0) \leq(3,0,0,0)
$$

Also distance of each up step to its matching down step in Dyck paths (Huang-Tamari, 1972). Componentwise order \Rightarrow Tamari lattice.
Dual bracket vector: size of left sub-tree at each internal node

$$
(0,0,2,3) \leq(0,0,1,2)
$$

Reversed componentwise order by duality!

Bracket vector, a notion of matching

Bracket vector: $\left(b_{1}, \ldots, b_{n}\right)$, with b_{i} the size of right sub-tree of node i
Thus, node i covers $i+1, i+2, \ldots, i+b_{i}$.
Encoding in parentheses: the "opening" of i is "closed" by $i+b_{i}$.

For dual bracket vector $\left(d_{1}, \ldots, d_{n}\right)$, node i covers $i-1, \ldots, i-d_{i}$.

Tamari intervals, with plane trees

Binary tree of size $n \Rightarrow$ plane tree with n edges and extra root:

- Remove leaves;
- Left child \rightarrow left sibling;
- Right child \rightarrow rightmost child.

Bracket vector: size of sub-tree of each node in prefix order
The "opening" of a node is "closed" by the last descendant (or itself).

Tamari intervals, three types of bijections

[S, T]: Tamari interval with S, T plane trees. Three ways for bijections:

- Take T, and use S as decorations
- Trees with decorations \Leftrightarrow maps (F.-Préville-Ratelle 2017, ...)
- Closed flow on forests (Chapoton 2014, Chapoton-Châtel-Pons 2015, F. 2018) or parking on trees (Lackner-Panholzer 2016, Curien-Hénard 2022)
- Grafting trees (Pons 2019) or $\beta(1,1)$-trees (Cori-Schaeffer 2003)
- Mixing S and T
- Interval posets (Chapoton-Châtel-Pons 2014, Châtel-Pons 2015)
- Cubic coordinates (Combe 2023)
- Blossoming trees (Schaeffer 1997, F.-Fusy-Nadeau 2023+)
- Take S, and use T as decorations
- Maps with orientation (Bernardi-Bonichon 2009)

0000000

Bijections, the first way: closed flow, or parking

[S, T]: Tamari interval with S, T plane trees
$\left(b_{1}, \ldots, b_{n}\right),\left(c_{1}, \ldots, c_{n}\right)$: bracket vectors of S, T (resp.). $b_{i} \leq c_{i}$ for all i.
"Opening" of node i in S is "closed" by a descendant of i (or itself) in T.
Well-parenthesized: only need \#ancestors each node "closes"
Closed flow (Chapoton-Châtel-Pons 2015):

- Root-ward conserved flow, zero at root (well-parenthesized);
- Each non-root node has an input flow (\#ancestors "closed");
- Each non-root node consumes 1 unity of flow (its "opening").

Parking on tree (Lackner-Panholzer 2016): input flow of cars parking on nodes

000000

Bijections, the first way: sticky trees

[$S, T]$: Tamari interval with S, T plane trees
"Opening" of node i in S is "closed" by a descendant of i (or itself) in T.
Well-parenthesized: only need the furthest ancestor each node "closes"
Sticky tree (F. 2018): plane tree T with labeling ℓ

- If u closes no one, then $\ell(u)=$ the depth of u;
- Otherwise, $\ell(u)=$ the depth of the last ancestor it doesn't "close".

Tamari interval

Sticky tree

Sticky trees and planar maps

Planar map: drawing of graphs on the plane without crossing
Rooted: with one corner of the infinite face distinguished

Sticky trees \Rightarrow planar bridgeless maps: "sticking" nodes of the same label together, while keeping planarity

Well-parenthesized \Rightarrow planar and bridgeless
Planar bridgeless maps \Rightarrow sticky trees: exploration process

Tamari intervals and planar maps

The same approach applies to several families of intervals and maps.

Intervals	Formula	Planar maps
General	$\frac{2}{n(n+1)}\binom{4 n+1}{n-1}$	bridgeless (F. 2018) 3-connected triangulation (Bernardi-Bonichon 2009, F. 2018)
Synchronized	$\frac{2}{n(n+1)}\binom{3 n}{n-1}$	non-separable (F.-Préville-Ratelle 2017)
New/modern	$\frac{3 \cdot 2^{n-2}}{n(n+1)}\binom{2 n-2}{n-1}$	bipartite (F. 2021)

What we can do with these direct bijections:

- Refined enumeration (e.g. (F. 2021))
- Symmetries (e.g. (F. 2018, F. 2021))
- Links to other objects (e.g., fighting fish (Duchi-Henrient 2023) and λ-terms (F. 2023))

0000000

Bijections, the first way: grafting trees

[$S, T]$: Tamari interval with S, T plane trees "Closing" of node i in S was "opened" by ancestor of i (or itself) in T.
Well-parenthesized: simply \#children of each node
Grafting tree (Pons 2019), plane tree version: T and labeling ℓ such that

$$
\forall \text { node } u, 0 \leq \ell(u) \leq\left|T_{u}\right|-\sum_{v \in T_{u} \backslash\{u\}} \ell(u) .
$$

$\ell(u)$: \#descendants "opened" by u, or \#children of u in S

$\beta(1,1)$-tree (Cori-Schaeffer 2003, decomposition of 3-connected cubic planar maps):
T and labeling ℓ^{\prime} such that ($\ell^{\prime}(u)$: \#descendants (or itself) not yet "opened")

$$
\forall \text { node } u, 1 \leq \ell^{\prime}(u) \leq 1+\sum_{v \text { child of } u} \ell^{\prime}(u)
$$

Bijections, the second way: interval posets

Bracket vector $\left(b_{i}\right)_{i \in[n]}$: right sub-tree of node i has $i+1, \ldots, i+b_{i}$
Dual bracket vector $\left(d_{i}\right)_{i \in[n]}$: left sub-tree of node i has $i-1, \ldots, i-d_{i}$
$I=[S, T]:$ Tamari interval with

- $\left(b_{1}, \ldots, b_{n}\right)$ the bracket vector for S,
- $\left(d_{1}, \ldots, d_{n}\right)$ the dual bracket vector for T.

Interval poset (Chapoton-Châtel-Pons 2014), (Châtel-Pons 2015): $\left(\leq_{I},[n]\right)$ with

- For all i, we have $i+1, \ldots, i+b_{i} \leq_{I} i$;
- For all i, we have $i-1, \ldots, i-d_{i} \leq_{I} i$.

Tamari condition $\Rightarrow\left(\leq_{I},[n]\right)$ goes down on both S, T, thus poset

Applications of interval posets

Interval poset

- Rise-contact symmetry of m-Tamari intervals (Pons 2019)
- Study of exceptional and (infinitely) modern intervals (Rognerud 2020)
- Cubic coordinates for geometry of Tamari interval poset (Combe 2023)
- Extended to binary relations on $[n]$ (weak order, Hopf algebra) (Châtel-Pilaud-Pons 2019), (Pilaud-Pons 2020)

0000000

Bijections, the second way: blossoming trees

$I=[S, T]:$ Tamari interval with

- $\left(b_{1}, \ldots, b_{n}\right)$ the bracket vector for S,
- $\left(d_{1}, \ldots, d_{n}\right)$ the dual bracket vector for T,
- Interval poset $\left(\leq_{I},[n]\right)$ with $i-d_{i}, \ldots, i-1, i, i+1, \ldots, i+b_{i} \leq_{I} i$.

Blossoming tree (Schaeffer 1997, F.-Fusy-Nadeau 2023+): 2 buds on each node

Tamari condition \Rightarrow no cycle, thus tree

0000000

Bijections, the second way: blossoming trees

$I=[S, T]:$ Tamari interval with

- $\left(b_{1}, \ldots, b_{n}\right)$ the bracket vector for S,
- $\left(d_{1}, \ldots, d_{n}\right)$ the dual bracket vector for T,
- Interval poset $\left(\leq_{I},[n]\right)$ with $i-d_{i}, \ldots, i-1, i, i+1, \ldots, i+b_{i} \leq_{I} i$.

Blossoming tree (Schaeffer 1997, F.-Fusy-Nadeau 2023+): 2 buds on each node

Tamari condition \Rightarrow no cycle, thus tree

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon-Schaeffer 2006), (Albenque-Poulalhon 2013)

- Tree structure \Rightarrow combinatorial manipulation of generating functions
- Specializes to synchronized and modern intervals, with enumerations
- Easy symmetries (duality \leftrightarrow root reversing)
- Combinatorial proof of a formula in (Bostan-Chyzak-Pilaud 2023+)

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon-Schaeffer 2006), (Albenque-Poulalhon 2013)

- Tree structure \Rightarrow combinatorial manipulation of generating functions
- Specializes to synchronized and modern intervals, with enumerations
- Easy symmetries (duality \leftrightarrow root reversing)
- Combinatorial proof of a formula in (Bostan-Chyzak-Pilaud 2023+)

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon-Schaeffer 2006), (Albenque-Poulalhon 2013)

- Tree structure \Rightarrow combinatorial manipulation of generating functions
- Specializes to synchronized and modern intervals, with enumerations
- Easy symmetries (duality \leftrightarrow root reversing)
- Combinatorial proof of a formula in (Bostan-Chyzak-Pilaud 2023+)

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon-Schaeffer 2006), (Albenque-Poulalhon 2013)

- Tree structure \Rightarrow combinatorial manipulation of generating functions
- Specializes to synchronized and modern intervals, with enumerations
- Easy symmetries (duality \leftrightarrow root reversing)
- Combinatorial proof of a formula in (Bostan-Chyzak-Pilaud 2023+)

Applications of blossoming trees

Blossoming trees to 3-connected planar triangulations (Poulalhon-Schaeffer 2006), (Albenque-Poulalhon 2013)

- Tree structure \Rightarrow combinatorial manipulation of generating functions
- Specializes to synchronized and modern intervals, with enumerations
- Easy symmetries (duality \leftrightarrow root reversing)
- Combinatorial proof of a formula in (Bostan-Chyzak-Pilaud 2023+)

0000000

Bijections, the third way: maps with orientation

[$S, T]$: Tamari interval with S, T plane trees
"Opening" of node i in T is never (?) "closed" by a descendant of i in S.
Well-parenthesized: "closed" by a child of an ancestor, or the root
Schnyder woods without ccw cycle (Schnyder 1989), (Bernardi-Bonichon 2009):

- Blue tree is S, with red buds given by T for pairing;
- One tail for each node; \#heads = \#nodes "closed" in T;

In fact a special case of Stanley lattice, and works on Kreweras lattice.

0000000

Bijections, the third way: maps with orientation

[$S, T]$: Tamari interval with S, T plane trees
"Opening" of node i in T is never (?) "closed" by a descendant of i in S.
Well-parenthesized: "closed" by a child of an ancestor, or the root
Schnyder woods without ccw cycle (Schnyder 1989), (Bernardi-Bonichon 2009):

- Blue tree is S, with red buds given by T for pairing;
- One tail for each node; \#heads = \#nodes "closed" in T;

In fact a special case of Stanley lattice, and works on Kreweras lattice.

0000000

Bijections, the third way: maps with orientation

[$S, T]$: Tamari interval with S, T plane trees
"Opening" of node i in T is never (?) "closed" by a descendant of i in S.
Well-parenthesized: "closed" by a child of an ancestor, or the root
Schnyder woods without ccw cycle (Schnyder 1989), (Bernardi-Bonichon 2009):

- Blue tree is S, with red buds given by T for pairing;
- One tail for each node; \#heads = \#nodes "closed" in T;

In fact a special case of Stanley lattice, and works on Kreweras lattice.

The case of ν-Tamari

Some of the constructions can be generalized to ν-Tamari

- Equivalent of binary trees and bracket vectors for elements (Ceballos-Padrol-Sarmiento 2020)
- Intervals in bijection with synchronized intervals (F.-Préville-Ratelle 2017), thus bijections with maps (F.-Préville-Ratelle 2017) and fighting fish (Duchi-Henriet 2023)
- Bernardi-Bonichon generalizes to ν-Tamari (Fusy-Humbert 2019+)

Section 3

Permutations, for extension

Tamari lattice, as quotient of the weak order

\mathfrak{S}_{n} as a Coxeter group generated by $s_{i}=(i, i+1)$
For $w \in \mathfrak{S}_{n}, \ell(w)=\min$. length of factorization of w in s_{i}
(Left) weak order $\leq_{\text {weak }}: s_{i} w$ covers w iff $\ell\left(s_{i} w\right)=\ell(w)+1$

Sylvester class : permutations with the same binary search tree
Only one 231-avoiding in each class. Induced order $=$ Tamari.

Generalizing Tamari lattice with Coxeter groups

Coxeter groups: $G=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i, j}}\right\rangle$ with $s_{i}^{2}=1$ and $m_{i, j} \geq 2$.
Classification: $A_{n} \cong \mathfrak{S}_{n+1}, B_{n}, D_{n}, I_{2}(p), E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}$
Cambrian lattices (Reading 2007):

- Works for all types, with combinatorial models;
- On c-aligned elements, with c a Coxeter element (product of all s_{i} 's);
- Different $c \Rightarrow$ same \#elements but not for \#intervals
- Further generalized to permutrees (Pilaud-Pons 2018) and m-Cambrian lattices (Stump-Thomas-Williams 2018+).
Parabolic Tamari lattices (Mühle-Williams 2019):
- Defined on parabolic quotients: $G^{J}=G /\left\langle s_{i} \mid i \in J\right\rangle$ for $J \subseteq[n]$
- Generalize Reading's Cambrian construction to parabolic quotients;
- With combinatorial models and bijections for type A.

Parabolic Cataland, type A

Simple model for parabolic Tamari lattices (Ceballos-F.-Mühle 2020)

- Simplifies some bijections in (Mühle-Williams 2019).
- Isomorphic to certain ν-Tamari lattices.
- Links to walks in the quadrant in (Bousquet-Mélou-Mishna 2010).
- Solves a conjecture in (Bergeron-Ceballos-Pilaud 2022).
- Recovers the zeta map in q, t-Catalan combinatorics.

Parabolic Cataland, type B

Work in progress! (F.-Mühle-Novelli 2023+)

- Counting in special cases
- Recovers the type-C zeta map (Sulzgruber-Thiel 2018)

Open questions

- Find a natural planar map family for (unlabeled) m-Tamari intervals, counted by (Bousquet-Mélou-Fusy-Préville-Ratelle 2011)

$$
\frac{m+1}{n(m n+1)}\binom{n(m+1)^{2}+m}{n-1} .
$$

- Bijections between $(m+1)$-constellations and greedy m-Tamari intervals, known (Bousquet-Mélou-Chapoton 2023+) to be counted by

$$
\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} .
$$

- Prove that there are as many m-Cambrian intervals as m-Tamari intervals (Préville-Ratelle, personal communication).
- Definition of type-B ν-Tamari lattices, at least for some ν (Ceballos-Padrol-Sarmiento 2020).
- Enumeration of elements in the higher Stasheff-Tamari lattice through maximal chains in Tamari lattice (Rambau 1997, Nelson-Treat 2022).

Open questions

- Find a natural planar map family for (unlabeled) m-Tamari intervals, counted by (Bousquet-Mélou-Fusy-Préville-Ratelle 2011)

$$
\frac{m+1}{n(m n+1)}\binom{n(m+1)^{2}+m}{n-1}
$$

- Bijections between $(m+1)$-constellations and greedy m-Tamari intervals, known (Bousquet-Mélou-Chapoton 2023+) to be counted by

$$
\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n}
$$

- Prove that there are as many m-Cambrian intervals as m-Tamari intervals (Préville-Ratelle, personal communication).
- Definition of type-B ν-Tamari lattices, at least for some ν (Ceballos-Padrol-Sarmiento 2020).
- Enumeration of elements in the higher Stasheff-Tamari lattice through maximal chains in Tamari lattice (Rambau 1997, Nelson-Treat 2022).

Thank you for listening!

