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e fundamental algorithmic tasks:
o counting,
o random sampling,
o combinatorial optimization,
o combinatorial generation [Knuth TAOCP Vol. 4A].
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o need that consecutive objects differ in a “local change”.
S
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e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

Examples
o binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

o n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

o bitstrings of length n by bitflips (BRGC) [Gray 53]

o spanning trees of a fixed graph by edge exchanges
[Cummings 66]

e All these examples lead to constant (amortized) delay generation algo-
rithms.
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— conv(X') is a polytope with X" as vertices.

111

100 110
100 __eeee? N\

ﬁ

—>» 011 m

000 010

e The edges of conv(X) capture “local changes” betwen elements of X

e Hamilton paths in conv(X’) are combinatorial Gray codes.
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— Thm.

Optimization over X C {0, 1}" can be solved in time O(T)
—

Ham. path in conv(arg min cx) can be computed in O(T polylog n)-delay.
xeX
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e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:
o O((mn + n?log n)log n) delay.

e Super versatile!

e Many more new Gray codes and applications:
o Forests, matchings, matroids, matroid intersection, etc...
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P1. Select an initial bitstring x! € X'. Set x + x! and U < [n].
P2. Visit x.

P3. Choose a vertex y € X such that

o yis unvisited

o among those, y differs to x in the shortest possible prefix of length in U,

o among those, choose y such that dy(x, y) is as small as possible.
| If no such y exists, then terminate. Else, set x +— y, update U, go to P2.

e Always works, no matter X', x!, or choice of y.

e Just a conceptual description.
e History-free implementation.

e Reduce to optimization problems
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I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

Start

minimizes
Hamming
distance

—

Lemma. If x, # y, and dy(x, y) is minimized, among y with y, # x,, then
xy i1s an edge of the polytope.
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I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

X]_ ® ® ®

X5 o X is the leaves of the tree.

X3 o The tree “prioritizes” changes in
X4 the shortest prefix.

X5

X6 o Our algorithm implictly traverses
X7 this tree

X8

X9
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