Traversing Combinatorial 0/1-Polytopes

Arturo Merino

Saarland University & Max Planck Institute for Informatics Joint work with Torsten Mütze

• Many different classes of combinatorial objects

binary trees

• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

• Many different classes of combinatorial objects

fundamental algorithmic tasks:
 o counting,

- fundamental algorithmic tasks:
 - \circ counting,
 - random sampling,

- fundamental algorithmic tasks:
 - \circ counting,
 - random sampling,
 - o combinatorial optimization,

- fundamental algorithmic tasks:
 - \circ counting,
 - o random sampling,
 - o combinatorial optimization,
 - combinatorial generation [Knuth TAOCP Vol. 4A].

• **Goal:** generate all objects of a combinatorial class efficiently.

Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
 - \circ polynomial total time: poly(|In|) \cdot poly(|Out|).

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
 - \circ polynomial total time: poly(|In|) \cdot poly(|Out|).
 - \circ polynomial amortized delay: poly(|In|) \cdot |Out|.

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
 - polynomial total time: poly(|In|) · poly(|Out|).
 - \circ polynomial amortized delay: poly(|In|) \cdot |Out|.
 - \implies each new object in poly(|In|) time on average.

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

2^{*n*}

- Different measures:
 - \circ polynomial total time: poly(|In|) \cdot poly(|Out|).
 - \circ polynomial amortized delay: poly(|In|) \cdot |Out|.
 - \implies each new object in poly(|In|) time on average.
 - **polynomial delay**: each new object in poly(|In|) time.

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
 - \circ polynomial total time: poly(|In|) \cdot poly(|Out|).
 - \circ polynomial amortized delay: poly(|In|) \cdot |Out|.
 - \implies each new object in poly(|In|) time on average.
 - **polynomial delay**: each new object in poly(|In|) time.
- Dream: each new object in constant time (or constant delay)

- Goal: generate all objects of a combinatorial class efficiently.
 visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
 - \circ **polynomial total time**: poly(|In|) \cdot poly(|Out|).
 - \circ polynomial amortized delay: poly(|In|) \cdot |Out|.
 - \implies each new object in poly(|In|) time on average.
 - polynomial delay: each new object in poly(|In|) time.
- Dream: each new object in constant time (or constant delay)
 need that consecutive objects differ in a "local change".

• Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])

- Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.

- Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.

Examples

• binary trees on *n* nodes by **rotations** [Lucas, van Baronaigien, Ruskey 93]

- Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.

- \circ binary trees on *n* nodes by **rotations** [Lucas, van Baronaigien, Ruskey 93]
- *n*-permutations by **adjacent transpositions**
 - (SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

- Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.

- \circ binary trees on *n* nodes by **rotations** [Lucas, van Baronaigien, Ruskey 93]
- *n*-permutations by adjacent transpositions
 (SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]
- bitstrings of length n by **bitflips** (BRGC) [Gray 53]

- Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.

- \circ binary trees on *n* nodes by **rotations** [Lucas, van Baronaigien, Ruskey 93]
- *n*-permutations by adjacent transpositions
 (SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]
- bitstrings of length *n* by **bitflips** (BRGC) [Gray 53]
- spanning trees of a fixed graph by edge exchanges
 [Cummings 66]

- Listing where consecutive objects differ by a "local change" \rightarrow Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.

- \circ binary trees on *n* nodes by **rotations** [Lucas, van Baronaigien, Ruskey 93]
- *n*-permutations by adjacent transpositions
 (SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]
- bitstrings of length *n* by **bitflips** (BRGC) [Gray 53]
- spanning trees of a fixed graph by edge exchanges
 [Cummings 66]
- All these examples lead to constant (amortized) delay generation algorithms.

• Many flip graphs can be realized as polytopes and posets.

• Many flip graphs can be realized as polytopes and posets.

● Gray code → Hamilton path/cycle on the flip graph

● Gray code → Hamilton path/cycle on the flip graph

• This work: Gray codes for binary sets $\mathcal{X} \subseteq \{0, 1\}^n$.

- This work: Gray codes for binary sets $\mathcal{X} \subseteq \{0, 1\}^n$.
- Natural polytope realization: $\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with \mathcal{X} as vertices.

- This work: Gray codes for binary sets $\mathcal{X} \subseteq \{0, 1\}^n$.
- Natural polytope realization: $\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with \mathcal{X} as vertices.

- This work: Gray codes for binary sets $\mathcal{X} \subseteq \{0, 1\}^n$.
- Natural polytope realization: $\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with \mathcal{X} as vertices.

• The edges of $conv(\mathcal{X})$ capture "local changes" betwen elements of \mathcal{X} .

- This work: Gray codes for binary sets $\mathcal{X} \subseteq \{0, 1\}^n$.
- Natural polytope realization: $\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with \mathcal{X} as vertices.

- The edges of $conv(\mathcal{X})$ capture "local changes" betwen elements of \mathcal{X} .
- Hamilton paths in $conv(\mathcal{X})$ are combinatorial Gray codes.

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope.

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. Compute: all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

	Generation	Gray codes
Avg. delay		
Delay		

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

	Generation	Gray codes
Avg. delay Delay	$\mathcal{O}(nT_{LP})$ [Bussieck, Lübbecke 99]	

0/1 Vertex enumeration problem Given: Inequalities $Ax \le b$ that define a 0/1 polytope. **Compute:** all vertices of $\{x \in \mathbb{R}^n : Ax \le b\}$

	Generation	Gray codes
Avg. delay Delay	$\mathcal{O}(nT_{LP})$ [Bussieck, Lübbecke 99]	???

Spanning tree Gray codes Given: A graph G = (V, E), n = |V|, m = |E|.

Spanning tree Gray codes

Given: A graph G = (V, E), n = |V|, m = |E|.

Compute: all spanning trees of *G* s.t. consecutives ones differ by an edge-exchange.

Spanning tree Gray codes

Given: A graph G = (V, E), n = |V|, m = |E|.

Compute: all spanning trees of *G* s.t. consecutives ones differ by an edge-exchange.

• $\mathcal{X} := \{\chi_T \in \{0, 1\}^m : T \text{ is a spanning tree of } G\}$

- $\mathcal{X} := \{\chi_T \in \{0, 1\}^m : T \text{ is a spanning tree of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow Spanning$ trees of G.

- $\mathcal{X} := \{\chi_T \in \{0, 1\}^m : T \text{ is a spanning tree of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow Spanning$ trees of G.
- Edges of $conv(\mathcal{X}) \leftarrow Spanning$ trees which differ by an edge exchange.

- $\mathcal{X} := \{\chi_T \in \{0, 1\}^m : T \text{ is a spanning tree of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow Spanning trees of G$.
- Edges of $conv(\mathcal{X}) \leftarrow Spanning$ trees which differ by an edge exchange.

	Generation	Gray codes
Avg. delay		
Delay		

- $\mathcal{X} := \{\chi_T \in \{0, 1\}^m : T \text{ is a spanning tree of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow Spanning trees of G$.
- Edges of $conv(\mathcal{X}) \leftarrow Spanning$ trees which differ by an edge exchange.

	Generation	Gray codes
Avg. delay	$\mathcal{O}(1)$ [Shioura, Tamura 95]	
Delay	$\mathcal{O}(m \log n (\log \log n)^3)$	[M, Mütze, Williams 22]

- $\mathcal{X} := \{\chi_T \in \{0, 1\}^m : T \text{ is a spanning tree of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow Spanning trees of G$.
- Edges of $conv(\mathcal{X}) \leftarrow Spanning$ trees which differ by an edge exchange.

	Generation	Gray codes
Avg. delay	$\mathcal{O}(1)$ [Shioura, Tamura 95]	$\mathcal{O}(1)$ [Smith 96]
Delay	$\mathcal{O}(m \log n (\log \log n)^3)$	[M, Mütze, Williams 22]

Perfect matching Gray codes Given: A graph G = (V, E), n = |V|, m = |E|.

Perfect matching Gray codes

Given: A graph
$$G = (V, E), n = |V|, m = |E|.$$

Compute: all perfect matchings of G s.t. consecutive ones differ by an alternating cycle.

Perfect matching Gray codes Given: A graph G = (V, E), n = |V|, m = |E|. **Compute:** all perfect matchings of *G* s.t. consecutive ones differ by an alternating cycle.

• $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow perfect matchings of G$.

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow perfect matchings of G$.
- Edges of $conv(\mathcal{X}) \leftarrow perfect matchings which differ by an alternating cycle.$

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow perfect matchings of G$.
- Edges of $conv(\mathcal{X}) \leftarrow perfect matchings which differ by an alternating cycle.$
- Only the bipartite version known:

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow perfect matchings of G$.
- Edges of $conv(\mathcal{X}) \leftarrow perfect matchings which differ by an alternating cycle.$
- Only the bipartite version known:

	Generation	Gray codes
Avg. delay		
Delay		

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow perfect matchings of G$.
- Edges of $conv(\mathcal{X}) \leftarrow perfect matchings which differ by an alternating cycle.$
- Only the bipartite version known:

	Generation	Gray codes
Avg. delay	$\mathcal{O}(n)$ [Fukuda, Matsui 94]	
Delay	$\mathcal{O}(m)$ [Fukuda, Matsui 94]	

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow perfect matchings of G$.
- Edges of $conv(\mathcal{X}) \leftarrow perfect matchings which differ by an alternating cycle.$
- Only the bipartite version known:

	Generation	Gray codes
Avg. delay	$\mathcal{O}(n)$ [Fukuda, Matsui 94]	222
Delay	$\mathcal{O}(m)$ [Fukuda, Matsui 94]	· · · ·

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes Given: A graph G = (V, E) and a weight function $w : E \to \mathbb{R}$.

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function $w : E \to \mathbb{R}$. **Output:** all minimum weight perfect matchings of G s.t. consecutive ones differ by an alternating cycle.
• $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow min-weight perfect matchings of G.$

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow min-weight perfect matchings of G.$
- Edges of $conv(\mathcal{X}) \leftarrow min$ -weight perfect matchings which differ by an alternating cycle.

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow min-weight perfect matchings of G.$
- Edges of $conv(\mathcal{X}) \leftarrow min$ -weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow min-weight perfect matchings of G.$
- Edges of $conv(\mathcal{X}) \leftarrow min$ -weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

	Generation	Gray codes
Avg. delay		
Delay		

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow min-weight perfect matchings of G.$
- Edges of $conv(\mathcal{X}) \leftarrow min$ -weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

	Generation	Gray codes
Avg. delay	$\mathcal{O}(m+n)$ [Fukuda, Matsui 92,94]	
Delay	???	

- $\mathcal{X} := \{\chi_M \in \{0, 1\}^m : M \text{ is a min-weight perfect matching of } G\}$
- Vertices of $conv(\mathcal{X}) \leftarrow min-weight perfect matchings of G.$
- Edges of $conv(\mathcal{X}) \leftarrow min$ -weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

	Generation	Gray codes
Avg. delay	$\mathcal{O}(m+n)$ [Fukuda, Matsui 92,94]	???
Delay	???	

• Solutions to the four previous problems with ad hoc methods.

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:

 \circ Counting \leftarrow generating functions,

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,
 - \circ Optimization \leftarrow linear programming, dynamic programming, greedy.

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,
 - \circ Optimization \leftarrow linear programming, dynamic programming, greedy.
- Combinatorial generation:

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,
 - \circ Optimization \leftarrow linear programming, dynamic programming, greedy.
- Combinatorial generation:
 - Reverse-search [Avis, Fukuda 96]

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,
 - \circ Optimization \leftarrow linear programming, dynamic programming, greedy.
- Combinatorial generation:
 - Reverse-search [Avis, Fukuda 96]
 - Backtracking [Folklore]

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,
 - \circ Optimization \leftarrow linear programming, dynamic programming, greedy.
- Combinatorial generation:
 - Reverse-search [Avis, Fukuda 96]
 - Backtracking [Folklore]
- Gray codes:

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
 - \circ Counting \leftarrow generating functions,
 - \circ Random sampling \leftarrow markov chains,
 - \circ Optimization \leftarrow linear programming, dynamic programming, greedy.
- Combinatorial generation:
 - Reverse-search [Avis, Fukuda 96]
 - Backtracking [Folklore]
- Gray codes:
 - Jump framework [Hartung, Hoang, Mütze, Williams 20]

Main results

Thm. Optimization over $\mathcal{X} \subseteq \{0, 1\}^n$ can be solved in time $\mathcal{O}(T)$ \Longrightarrow A Hamilton path in conv (\mathcal{X}) can be computed in $\mathcal{O}(T$ polylog *n*)-delay.

Main results

Thm.Optimization over $\mathcal{X} \subseteq \{0, 1\}^n$ can be solved in time $\mathcal{O}(\mathcal{T})$ \Longrightarrow A Hamilton path in conv (\mathcal{X}) can be computed in $\mathcal{O}(\mathcal{T} \text{ polylog } n)$ -delay.

• Weighted version: Let $c \in \mathbb{R}^n$.

Main results

Thm. ——

Optimization over $\mathcal{X} \subseteq \{0, 1\}^n$ can be solved in time $\mathcal{O}(\mathcal{T})$ \Longrightarrow A Hamilton path in conv (\mathcal{X}) can be computed in $\mathcal{O}(\mathcal{T}$ polylog *n*)-delay.

• Weighted version: Let $c \in \mathbb{R}^n$.

• 0/1 Vertex enumeration:

- 0/1 Vertex enumeration:
 - $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

- 0/1 Vertex enumeration:
 - $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

• Perfect matching Gray codes:

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

• Perfect matching Gray codes:

 $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.

- 0/1 Vertex enumeration:
 - $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
 - $\circ \mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
 - $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.
- Min weight perfect matching Gray codes:

- 0/1 Vertex enumeration:
 - $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
 - $\circ \mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
 - $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.
- Min weight perfect matching Gray codes: $\circ O((mn + n^2 \log n) \log n) \text{ delay.}$

- 0/1 Vertex enumeration:
 - $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
 O(m log n) delay.
- Perfect matching Gray codes:
 - $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.
- Min weight perfect matching Gray codes: • $O((mn + n^2 \log n) \log n)$ delay.

Best delay for generation algorithms!

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

• Perfect matching Gray codes:

 $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.

• Min weight perfect matching Gray codes: $\circ O((mn + n^2 \log n) \log n)$ delay.

Best amortized delay for generation algorithms!

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

- Spanning tree Gray codes:
 - $\circ \mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:

• $\mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.

• Min weight perfect matching Gray codes: $\circ O((mn + n^2 \log n) \log n)$ delay.

Results in non-bipartite graphs!

- 0/1 Vertex enumeration:
 - $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
 - $\circ \mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
 - $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.
- Min weight perfect matching Gray codes: $\circ O((mn + n^2 \log n) \log n) \text{ delay.}$

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

• Perfect matching Gray codes:

 $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.

- Min weight perfect matching Gray codes: $\circ O((mn + n^2 \log n) \log n)$ delay.
- Super versatile!

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

- Perfect matching Gray codes: • $\mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.
- Min weight perfect matching Gray codes: $\circ O((mn + n^2 \log n) \log n)$ delay.
- Super versatile!
- Many more new Gray codes and applications:

• 0/1 Vertex enumeration:

 $\circ O(\log nT_{LP})$ delay + Hamilton path in the polytope.

• Spanning tree Gray codes:

 $\circ \mathcal{O}(m \log n)$ delay.

• Perfect matching Gray codes:

 $\circ \mathcal{O}(m\sqrt{n}(\log n)^{5/2})$ delay.

- Min weight perfect matching Gray codes: • $O((mn + n^2 \log n) \log n)$ delay.
- Super versatile!
- Many more new Gray codes and applications:
 Forests, matchings, matroids, matroid intersection, etc...

The algorithm

P1. Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
P1. Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$. **P2.** Visit *x*.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.
 - Example: 100
 110
 110
 011
 011

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,
- \circ among those, y differs to x in the shortest possible prefix,
- \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

 \circ among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Otherwise, set $x \leftarrow y$, and go to **P2**.

• Always works, no matter \mathcal{X} , x^1 , or choice of y.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- Always works, no matter \mathcal{X} , x^1 , or choice of y.
- Just a *conceptual* description.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$.
- **P2.** Visit *x*.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- \circ y is unvisited,

 \circ among those, y differs to x in the shortest possible prefix,

- Always works, no matter \mathcal{X} , x^1 , or choice of y.
- Just a *conceptual* description.
- *History-free* implementation.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$ and $U \leftarrow [n]$. **P2.** Visit x.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- y is unvisited,

• among those, y differs to x in the shortest possible prefix of length in U, • among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Else, set $x \leftarrow y$, update U, go to P2.

- Always works, no matter \mathcal{X} , x^1 , or choice of y.
- Just a *conceptual* description.
- *History-free* implementation.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$ and $U \leftarrow [n]$. **P2.** Visit x.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- y is unvisited,

• among those, y differs to x in the shortest possible prefix of length in U, • among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Else, set $x \leftarrow y$, update U, go to P2.

- Always works, no matter \mathcal{X} , x^1 , or choice of y.
- Just a *conceptual* description.
- *History-free* implementation.

- **P1.** Select an initial bitstring $x^1 \in \mathcal{X}$. Set $x \leftarrow x^1$ and $U \leftarrow [n]$. **P2.** Visit x.
- **P3.** Choose a vertex $y \in \mathcal{X}$ such that
- y is unvisited,

• among those, y differs to x in the shortest possible prefix of length in U, • among those, choose y such that $d_H(x, y)$ is as small as possible. If no such y exists, then terminate. Else, set $x \leftarrow y$, update U, go to P2.

- Always works, no matter \mathcal{X} , x^1 , or choice of y.
- Just a *conceptual* description.
- *History-free* implementation.
- Reduce to optimization problems

Why greedy works?

• Why it computes Hamilton paths?

Why greedy works?

- Why it computes Hamilton paths?
- How to implement in a history-free way?

Why greedy works?

- Why it computes Hamilton paths?
- How to implement in a history-free way?
- Optimization? Where?

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v.

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in \mathcal{X} starting from v. **Pf.**

• Hamilton paths where every suffix 0 and 1 appears consecutive.

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

 $\circ~\mathcal{X}$ is the leaves of the tree.

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

 $\circ~\mathcal{X}$ is the leaves of the tree.

 \circ The tree "prioritizes" changes in the shortest prefix.

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

 $\circ~\mathcal{X}$ is the leaves of the tree.

 \circ The tree "prioritizes" changes in the shortest prefix.

 Our algorithm implicitly traverses this tree

• What do we need to compute to proceed from *x*?

• What do we need to compute to proceed from *x*?

- What do we need to compute to proceed from *x*?
 - Leftmost branching that leads to something new.

What do we need to compute to proceed from x?
Leftmost branching that leads to something new.
A polytope edge towards its subtree.

What do we need to compute to proceed from x?
Leftmost branching that leads to something new.
A polytope edge towards its subtree.

- What do we need to compute to proceed from *x*?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

- What do we need to compute to proceed from *x*?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

Branching at distance at least k from root

- What do we need to compute to proceed from x?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

Branching at distance at least k from root \iff $\exists y \neq x$ with $x_{n-k} \dots x_n$ as suffix.

- What do we need to compute to proceed from x?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

Branching at distance at least k from root \iff $\exists y \neq x \text{ with } x_{n-k} \dots x_n \text{ as suffix.}$ x is not an optimal solution of $\max d_H(x, y)$ s.t. y has $x_{n-k} \dots x_n$ as a suffix.

- What do we need to compute to proceed from x?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

- What do we need to compute to proceed from x?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

What do we need to compute to proceed from x?
Leftmost branching that leads to something new.
A polytope edge towards its subtree.

- What do we need to compute to proceed from *x*?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

- What do we need to compute to proceed from x?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

 \circ Being in a subtree prescribes a suffix.

- What do we need to compute to proceed from *x*?
 - \circ Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

 \circ Being in a subtree prescribes a suffix.

• Need to minimize $d_H(x, y)$ among them.

- What do we need to compute to proceed from *x*?
 - Leftmost branching that leads to something new.
 - A polytope edge towards its subtree.

 \circ Being in a subtree prescribes a suffix.

• Need to minimize $d_H(x, y)$ among them.

 \circ Just one more optimization step is needed.

What do we need to compute to proceed from x?
Leftmost branching that leads to something new.
A polytope edge towards its subtree.

What do we need to compute to proceed from x?
Leftmost branching that leads to something new.
A polytope edge towards its subtree.

• We obtain a runtime of $\mathcal{O}(T \operatorname{polylog} n)$.
Why optimization?

What do we need to compute to proceed from x?
 Leftmost branching that leads to something new.
 A polytope edge towards its subtree.

- We obtain a runtime of $\mathcal{O}(T \operatorname{polylog} n)$.
- More tricky: guarantee that branching leads to something new + history-freeness.

Why optimization?

What do we need to compute to proceed from x?
 Leftmost branching that leads to something new.
 A polytope edge towards its subtree.

- We obtain a runtime of $\mathcal{O}(T \operatorname{polylog} n)$.
- More tricky: guarantee that branching leads to something new + history-freeness.

• Better understanding of the black box.

• Better understanding of the black box.

• Amortized analysis (cf. [M, Mütze, Williams 22]).

• Better understanding of the black box.

• Amortized analysis (cf. [M, Mütze, Williams 22]).

- Better understanding of the black box.
 O Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}(T_{LP})$ -delay vertex enumeration in 0/1 polytopes. **Crazy:** poly(*n*, *m*).

- Better understanding of the black box.
 O Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.

- Better understanding of the black box.
 O Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}(T_{LP})$ -delay vertex enumeration in 0/1 polytopes. **Crazy:** poly(n, m). • **This work:** $\mathcal{O}(\log n \cdot T_{LP})$ -delay.
- Generalizations to non-binary \mathcal{X} .

- Better understanding of the black box.
 Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary \mathcal{X} .

• Much more complicated case. (e.g., Hamiltonicity barrier)

- Better understanding of the black box.
 Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on 0/1 polytopes

- Better understanding of the black box.
 O Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on 0/1 polytopes
 Pancyclicity-type result?

- Better understanding of the black box.
 Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- \bullet Additional Questions on 0/1 polytopes
 - Pancyclicity-type result?
 - Algorithmic questions for: diameter, shortest path, etc...

- Better understanding of the black box.
 Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- \bullet Additional Questions on 0/1 polytopes
 - Pancyclicity-type result?
 - Algorithmic questions for: diameter, shortest path, etc...
 - This work: Efficient optimization implies eff. Hamiltonicity.

- Better understanding of the black box.
 O Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- \bullet Additional Questions on 0/1 polytopes
 - Pancyclicity-type result?
 - Algorithmic questions for: diameter, shortest path, etc...
 - This work: Efficient optimization implies eff. Hamiltonicity.
 - Shortest path is sometimes very hard [Cardinal, Steiner 23]

- Better understanding of the black box.
 Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- \bullet Additional Questions on 0/1 polytopes
 - Pancyclicity-type result?
 - Algorithmic questions for: diameter, shortest path, etc...
 - This work: Efficient optimization implies eff. Hamiltonicity.
 - Shortest path is sometimes very hard [Cardinal, Steiner 23] • Given all N vertices of P, sort them in Ham path order.

- Better understanding of the black box.
 Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- \bullet Additional Questions on 0/1 polytopes
 - Pancyclicity-type result?
 - Algorithmic questions for: diameter, shortest path, etc...
 - This work: Efficient optimization implies eff. Hamiltonicity.
 - Shortest path is sometimes very hard [Cardinal, Steiner 23] • Given all N vertices of P, sort them in Ham path order.

• **This work:** $\mathcal{O}(nN^2)$ time algorithm. What about $\mathcal{O}(nN)$?

Open questions Thanks for your attention!

- Better understanding of the black box.
 O Amortized analysis (cf. [M, Mütze, Williams 22]).
- O(T_{LP})-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
 This work: O(log n · T_{LP})-delay.
- Generalizations to non-binary X.
 Much more complicated case. (e.g., Hamiltonicity barrier)
- \bullet Additional Questions on 0/1 polytopes
 - Pancyclicity-type result?
 - Algorithmic questions for: diameter, shortest path, etc...
 - This work: Efficient optimization implies eff. Hamiltonicity.
 - \circ Shortest path is sometimes very hard [Cardinal, Steiner 23]
 - \circ Given all N vertices of P, sort them in Ham path order.
 - This work: $\mathcal{O}(nN^2)$ time algorithm. What about $\mathcal{O}(nN)$?