
Traversing Combinatorial 0/1-Polytopes

Arturo Merino
Saarland University & Max Planck Institute for Informatics

Joint work with Torsten Mütze

min dH(x∗, x)

s.t. x ∈ X ,

xi = 1 ∀i ∈ IP ,

xi = 0 ∀i ∈ IF .

Introduction

binary trees

. . .

• Many different classes of combinatorial objects

Introduction

123
132
312

. . .

permutationsbinary trees

321
. . .

• Many different classes of combinatorial objects

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

• Many different classes of combinatorial objects

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

spanning trees

. . .

• Many different classes of combinatorial objects

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

spanning trees

. . .

• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

spanning trees

. . .

• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

◦ counting,

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

spanning trees

. . .

• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

◦ counting,

◦ random sampling,

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

spanning trees

. . .

• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

◦ counting,

◦ random sampling,

◦ combinatorial optimization,

Introduction

123
132
312

. . .

permutationsbinary trees bitstrings

000
001
010
011
. . .

321
. . .

spanning trees

. . .

• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

◦ counting,

◦ random sampling,

◦ combinatorial optimization,

◦ combinatorial generation [Knuth TAOCP Vol. 4A].

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

• Different measures:

◦ polynomial total time: poly(|In|) · poly(|Out|).

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

• Different measures:

◦ polynomial total time: poly(|In|) · poly(|Out|).

◦ polynomial amortized delay: poly(|In|) · |Out|.

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

• Different measures:

◦ polynomial total time: poly(|In|) · poly(|Out|).

◦ polynomial amortized delay: poly(|In|) · |Out|.
=⇒ each new object in poly(|In|) time on average.

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

• Different measures:

◦ polynomial total time: poly(|In|) · poly(|Out|).

◦ polynomial amortized delay: poly(|In|) · |Out|.
=⇒ each new object in poly(|In|) time on average.

◦ polynomial delay: each new object in poly(|In|) time.

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

• Different measures:

◦ polynomial total time: poly(|In|) · poly(|Out|).

◦ polynomial amortized delay: poly(|In|) · |Out|.
=⇒ each new object in poly(|In|) time on average.

◦ polynomial delay: each new object in poly(|In|) time.

• Dream: each new object in constant time (or constant delay)

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial generation

• Goal: generate all objects of a combinatorial class efficiently.

• Meaning of efficiency: |Out| usually exponential.

• Different measures:

◦ polynomial total time: poly(|In|) · poly(|Out|).

◦ polynomial amortized delay: poly(|In|) · |Out|.
=⇒ each new object in poly(|In|) time on average.

◦ polynomial delay: each new object in poly(|In|) time.

• Dream: each new object in constant time (or constant delay)

◦ need that consecutive objects differ in a “local change”.

123
132
312

. . .

000
001
010
011
. . .

321
.Cn n! 2n nn−2

◦ visit each object exactly once.

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

• Combinatorial notion that aids in exhaustive generation.

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Examples

◦ binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

• Combinatorial notion that aids in exhaustive generation.

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Examples

◦ binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

◦ n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

• Combinatorial notion that aids in exhaustive generation.

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Examples

◦ binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

◦ n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

◦ bitstrings of length n by bitflips (BRGC) [Gray 53]

• Combinatorial notion that aids in exhaustive generation.

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Examples

◦ binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

◦ n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

◦ bitstrings of length n by bitflips (BRGC) [Gray 53]

◦ spanning trees of a fixed graph by edge exchanges
[Cummings 66]

• Combinatorial notion that aids in exhaustive generation.

Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Examples

◦ binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

◦ n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

◦ bitstrings of length n by bitflips (BRGC) [Gray 53]

◦ spanning trees of a fixed graph by edge exchanges
[Cummings 66]

• All these examples lead to constant (amortized) delay generation algo-
rithms.

• Combinatorial notion that aids in exhaustive generation.

Gray Codes and Flip Graphs

• Flip graph: vertices are combinatorial objects, edges capture change
operations.

Gray Codes and Flip Graphs

• Flip graph: vertices are combinatorial objects, edges capture change
operations.

Gray Codes and Flip Graphs

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

• Flip graph: vertices are combinatorial objects, edges capture change
operations.

Gray Codes and Flip Graphs

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• Flip graph: vertices are combinatorial objects, edges capture change
operations.

Gray Codes and Flip Graphs

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• Flip graph: vertices are combinatorial objects, edges capture change
operations.

Gray Codes and Flip Graphs

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

• Many flip graphs can be realized as polytopes and posets.

Gray Codes and Flip Graphs

Associahedron /
Tamari lattice

Π4 Permutahedron /
weak order

Q4 Hypercube /
Boolean lattice

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

Base polytope

• Many flip graphs can be realized as polytopes and posets.

Gray Codes and Flip Graphs

Associahedron /
Tamari lattice

Π4 Permutahedron /
weak order

Q4 Hypercube /
Boolean lattice

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

Base polytope

• Gray code → Hamilton path/cycle on the flip graph

Gray Codes and Flip Graphs

Associahedron /
Tamari lattice

Π4 Permutahedron /
weak order

Q4 Hypercube /
Boolean lattice

341242134132 2431 3241

42314312 3421

4321

1234

13241243 2134

214313421423 3124 2314

314224134123 2341 32141432

0001 0011 10011011

0101 0111 11011111

0100 0110 11001110

10000010 10100000

Base polytope

• Gray code → Hamilton path/cycle on the flip graph

Binary sets and 0/1 polytopes

• This work: Gray codes for binary sets X ⊆ {0, 1}n.

000 010

100
111

011

110

Binary sets and 0/1 polytopes

• This work: Gray codes for binary sets X ⊆ {0, 1}n.

• Natural polytope realization:
→ conv(X) is a polytope with X as vertices.

000 010

100
111

011

110

Binary sets and 0/1 polytopes

• This work: Gray codes for binary sets X ⊆ {0, 1}n.

• Natural polytope realization:
→ conv(X) is a polytope with X as vertices.

000 010

100
111

011

110

Binary sets and 0/1 polytopes

• This work: Gray codes for binary sets X ⊆ {0, 1}n.

• Natural polytope realization:
→ conv(X) is a polytope with X as vertices.

• The edges of conv(X) capture “local changes” betwen elements of X .

000 010

100
111

011

110

100 110

000 010
011

110

Binary sets and 0/1 polytopes

• This work: Gray codes for binary sets X ⊆ {0, 1}n.

• Natural polytope realization:
→ conv(X) is a polytope with X as vertices.

• Hamilton paths in conv(X) are combinatorial Gray codes.

• The edges of conv(X) capture “local changes” betwen elements of X .

000 010

100
111

011

110

100 110

000 010
011

110

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Avg. delay

Delay

Generation Gray codes

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Avg. delay

Delay

Generation Gray codes

O(nTLP) [Bussieck, Lübbecke 99]

Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Avg. delay

Delay

Generation Gray codes

O(nTLP) [Bussieck, Lübbecke 99] ???

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

• X := {χT ∈ {0, 1}m : T is a spanning tree of G}

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

• X := {χT ∈ {0, 1}m : T is a spanning tree of G}

• Vertices of conv(X)← Spanning trees of G .

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

• X := {χT ∈ {0, 1}m : T is a spanning tree of G}

• Vertices of conv(X)← Spanning trees of G .

• Edges of conv(X)← Spanning trees which differ by an edge exchange.

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

• X := {χT ∈ {0, 1}m : T is a spanning tree of G}

• Vertices of conv(X)← Spanning trees of G .

• Edges of conv(X)← Spanning trees which differ by an edge exchange.

Avg. delay

Delay

Generation Gray codes

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

• X := {χT ∈ {0, 1}m : T is a spanning tree of G}

• Vertices of conv(X)← Spanning trees of G .

• Edges of conv(X)← Spanning trees which differ by an edge exchange.

Avg. delay

Delay

Generation Gray codes

O(1) [Shioura, Tamura 95]

O(m log n(log log n)3) [M, Mütze, Williams 22]

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

• X := {χT ∈ {0, 1}m : T is a spanning tree of G}

• Vertices of conv(X)← Spanning trees of G .

• Edges of conv(X)← Spanning trees which differ by an edge exchange.

Avg. delay

Delay

Generation Gray codes

O(1) [Shioura, Tamura 95]

O(m log n(log log n)3) [M, Mütze, Williams 22]

O(1) [Smith 96]

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

• Vertices of conv(X)← perfect matchings of G .

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

• Vertices of conv(X)← perfect matchings of G .

• Edges of conv(X)← perfect matchings which differ by an alternating
cycle.

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

• Vertices of conv(X)← perfect matchings of G .

• Edges of conv(X)← perfect matchings which differ by an alternating
cycle.

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

• Vertices of conv(X)← perfect matchings of G .

• Edges of conv(X)← perfect matchings which differ by an alternating
cycle.

Avg. delay

Delay

Generation Gray codes

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

• Vertices of conv(X)← perfect matchings of G .

• Edges of conv(X)← perfect matchings which differ by an alternating
cycle.

Avg. delay

Delay

Generation Gray codes

O(n) [Fukuda, Matsui 94]

O(m) [Fukuda, Matsui 94]

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V , E), n = |V |, m = |E |.
Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a perfect matching of G}

• Vertices of conv(X)← perfect matchings of G .

• Edges of conv(X)← perfect matchings which differ by an alternating
cycle.

Avg. delay

Delay

Generation Gray codes

O(n) [Fukuda, Matsui 94]
???O(m) [Fukuda, Matsui 94]

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

• Vertices of conv(X)← min-weight perfect matchings of G .

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

• Vertices of conv(X)← min-weight perfect matchings of G .

• Edges of conv(X)← min-weight perfect matchings which differ by an
alternating cycle.

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

• Vertices of conv(X)← min-weight perfect matchings of G .

• Edges of conv(X)← min-weight perfect matchings which differ by an
alternating cycle.

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

• Vertices of conv(X)← min-weight perfect matchings of G .

• Edges of conv(X)← min-weight perfect matchings which differ by an
alternating cycle.

Avg. delay

Delay

Generation Gray codes

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

• Vertices of conv(X)← min-weight perfect matchings of G .

• Edges of conv(X)← min-weight perfect matchings which differ by an
alternating cycle.

Avg. delay

Delay

Generation Gray codes

O(m + n) [Fukuda, Matsui 92,94]

???

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V , E) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}

• Vertices of conv(X)← min-weight perfect matchings of G .

• Edges of conv(X)← min-weight perfect matchings which differ by an
alternating cycle.

Avg. delay

Delay

Generation Gray codes

O(m + n) [Fukuda, Matsui 92,94]
???

???

Big Hammers

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Combinatorial generation:

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Combinatorial generation:

◦ Reverse-search [Avis, Fukuda 96]

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Combinatorial generation:

◦ Reverse-search [Avis, Fukuda 96]

◦ Backtracking [Folklore]

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Combinatorial generation:

◦ Reverse-search [Avis, Fukuda 96]

◦ Backtracking [Folklore]

• Gray codes:

• Solutions to the four previous problems with ad hoc methods.

Big Hammers

• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Combinatorial generation:

◦ Reverse-search [Avis, Fukuda 96]

◦ Backtracking [Folklore]

• Gray codes:

◦ Jump framework [Hartung, Hoang, Mütze, Williams 20]

• Solutions to the four previous problems with ad hoc methods.

Main results

Optimization over X ⊆ {0, 1}n can be solved in time O(T)
=⇒

A Hamilton path in conv(X) can be computed in O(T polylog n)-delay.

Thm.

Main results

Optimization over X ⊆ {0, 1}n can be solved in time O(T)
=⇒

A Hamilton path in conv(X) can be computed in O(T polylog n)-delay.

Thm.

• Weighted version: Let c ∈ Rn.

Main results

Optimization over X ⊆ {0, 1}n can be solved in time O(T)
=⇒

A Hamilton path in conv(X) can be computed in O(T polylog n)-delay.

Thm.

Optimization over X ⊆ {0, 1}n can be solved in time O(T)
=⇒

Ham. path in conv(arg min
x∈X

cx) can be computed in O(T polylog n)-delay.

Thm.

• Weighted version: Let c ∈ Rn.

Black box corollaries

• 0/1 Vertex enumeration:

Black box corollaries

• 0/1 Vertex enumeration:

◦ O(log nTLP) delay + Hamilton path in the polytope.

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

Best delay for generation algorithms!

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

Best amortized delay for generation algorithms!

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

Results in non-bipartite graphs!

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

• Super versatile!

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

• Many more new Gray codes and applications:

• Super versatile!

Black box corollaries

• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

• Many more new Gray codes and applications:

◦ Forests, matchings, matroids, matroid intersection, etc...

• Super versatile!

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.
P2. Visit x .

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

P2. Visit x .

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

P2. Visit x .

◦ y is unvisited,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

P2. Visit x .

◦ y is unvisited,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

◦ y is unvisited,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110
100

◦ among those, y differs to x in the shortest possible prefix,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

010

110

◦ among those, y differs to x in the shortest possible prefix,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

010

110

◦ among those, choose y such that dH(x , y) is as small as possible.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

010

◦ among those, y differs to x in the shortest possible prefix,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

111

011

◦ among those, y differs to x in the shortest possible prefix,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

◦ among those, choose y such that dH(x , y) is as small as possible.

111

011

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

111

◦ among those, y differs to x in the shortest possible prefix,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

If no such y exists, then terminate.

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Example:

000
010

100

111

011

110

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Always works, no matter X , x1, or choice of y .

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• Just a conceptual description.

• Always works, no matter X , x1, or choice of y .

The algorithm

P1. Select an initial bitstring x1 ∈ X . Set x ← x1.

P3. Choose a vertex y ∈ X such that

◦ among those, y differs to x in the shortest possible prefix,

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

If no such y exists, then terminate. Otherwise, set x ← y , and go to P2.

◦ y is unvisited,

• History-free implementation.

• Just a conceptual description.

• Always works, no matter X , x1, or choice of y .

The algorithm

P3. Choose a vertex y ∈ X such that

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

◦ y is unvisited,

• History-free implementation.

P1. Select an initial bitstring x1 ∈ X . Set x ← x1 and U ← [n].

◦ y is unvisited,

• Just a conceptual description.

• Always works, no matter X , x1, or choice of y .

◦ among those, y differs to x in the shortest possible prefix of length in U ,

If no such y exists, then terminate. Else, set x ← y , update U , go to P2.

The algorithm

P3. Choose a vertex y ∈ X such that

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

◦ y is unvisited,

• History-free implementation.

P1. Select an initial bitstring x1 ∈ X . Set x ← x1 and U ← [n].

◦ y is unvisited,

• Just a conceptual description.

• Always works, no matter X , x1, or choice of y .

◦ among those, y differs to x in the shortest possible prefix of length in U ,

If no such y exists, then terminate. Else, set x ← y , update U , go to P2.

The algorithm

P3. Choose a vertex y ∈ X such that

◦ among those, choose y such that dH(x , y) is as small as possible.

P2. Visit x .

◦ y is unvisited,

• History-free implementation.

• Reduce to optimization problems

P1. Select an initial bitstring x1 ∈ X . Set x ← x1 and U ← [n].

◦ y is unvisited,

• Just a conceptual description.

• Always works, no matter X , x1, or choice of y .

◦ among those, y differs to x in the shortest possible prefix of length in U ,

If no such y exists, then terminate. Else, set x ← y , update U , go to P2.

Why greedy works?

• Why it computes Hamilton paths?

Why greedy works?

• Why it computes Hamilton paths?

• How to implement in a history-free way?

Why greedy works?

• Why it computes Hamilton paths?

• How to implement in a history-free way?

• Optimization? Where?

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

Start

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

xn = 0
xn = 1

Start

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

xn = 0
xn = 1

Start

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

xn = 0
xn = 1

Start

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

xn = 0
xn = 1

Start

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

Lemma. If xn 6= yn and dH(x , y) is minimized, among y with yn 6= xn, then
xy is an edge of the polytope.

xn = 0
xn = 1

Start

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

Lemma. If xn 6= yn and dH(x , y) is minimized, among y with yn 6= xn, then
xy is an edge of the polytope.

xn = 0
xn = 1

Start

minimizes
Hamming
distance

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

Lemma. If xn 6= yn and dH(x , y) is minimized, among y with yn 6= xn, then
xy is an edge of the polytope.

xn = 0
xn = 1

Start

minimizes
Hamming
distance

Why it works: Hamiltonicity of 0/1 polytopes

Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v ∈ X there is a Hamilton path in X starting from v .

Pf.

Lemma. If xn 6= yn and dH(x , y) is minimized, among y with yn 6= xn, then
xy is an edge of the polytope.

Start

minimizes
Hamming
distance

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

0
0

0
0

0

0
0

0

0

0

1 1 1
1 1

1
1
11
1 1

1

1
1

1
1
1

1
1

0
0

0

0

1
1

1
0
0

0

0

01
1
1

1
1
11

10

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

0
0

0
0

0

0
0

0

0

0

1 1 1
1 1

1
1
11
1 1

1

1
1

1
1
1

1
1

0
0

0

0

1
1

1
0
0

0

0

01
1
1

1
1
11

10

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

0

0

0
0

0

0
0

0

0

1 1 1
1 1 1
1
11
1 1

1

1
1

1
1
1

1
1

0
0

0

0 0

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

◦ X is the leaves of the tree.

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

◦ X is the leaves of the tree.

◦ The tree “prioritizes” changes in
the shortest prefix.

• They have a “tree-like” structure.

Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

◦ X is the leaves of the tree.

◦ The tree “prioritizes” changes in
the shortest prefix.

◦ Our algorithm implictly traverses
this tree

• They have a “tree-like” structure.

Why optimization?

• What do we need to compute to proceed from x?

x

Why optimization?

• What do we need to compute to proceed from x?

x

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Branching at distance at least k from root
⇐⇒

∃y 6= x with xn−k . . . xn as suffix.

k

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Branching at distance at least k from root
⇐⇒

∃y 6= x with xn−k . . . xn as suffix.

k

y

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Branching at distance at least k from root
⇐⇒

∃y 6= x with xn−k . . . xn as suffix.

k

y

⇐⇒
x is not an optimal solution of

max dH(x , y)

s.t. y has xn−k . . . xn as a suffix.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Branching at distance at least k from root
⇐⇒

∃y 6= x with xn−k . . . xn as suffix.

k

y

⇐⇒
x is not an optimal solution of

max dH(x , y)

s.t. y has xn−k . . . xn as a suffix.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Branching at distance at least k from root
⇐⇒

∃y 6= x with xn−k . . . xn as suffix.

k

y

⇐⇒
x is not an optimal solution of

max dH(x , y)

s.t. y has xn−k . . . xn as a suffix.

◦ Optimization problem!

◦ Do binary search, we obtain O(T polylog n) time.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

◦ Being in a subtree prescribes a suffix.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

◦ Being in a subtree prescribes a suffix.

◦ Need to minimize dH(x , y) among them.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

◦ Being in a subtree prescribes a suffix.

◦ Need to minimize dH(x , y) among them.

◦ Just one more optimization step is needed.

• Fact: dH(x , y) is an affine function for fixed x .

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

• We obtain a runtime of O(T polylog n).

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

• We obtain a runtime of O(T polylog n).

• More tricky: guarantee that branching leads to something new +
history-freeness.

Why optimization?

• What do we need to compute to proceed from x?

x

◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.

• We obtain a runtime of O(T polylog n).

• More tricky: guarantee that branching leads to something new +
history-freeness.

Open questions

Open questions

• Better understanding of the black box.

Open questions

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Open questions

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Open questions

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Open questions

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Open questions

• Generalizations to non-binary X .

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

◦ Algorithmic questions for: diameter, shortest path, etc...

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

◦ This work: Efficient optimization implies eff. Hamiltonicity.

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

◦ Algorithmic questions for: diameter, shortest path, etc...

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

◦ Shortest path is sometimes very hard [Cardinal, Steiner 23]

◦ This work: Efficient optimization implies eff. Hamiltonicity.

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

◦ Algorithmic questions for: diameter, shortest path, etc...

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

◦ Shortest path is sometimes very hard [Cardinal, Steiner 23]

◦ This work: Efficient optimization implies eff. Hamiltonicity.

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

◦ Algorithmic questions for: diameter, shortest path, etc...

◦ Given all N vertices of P , sort them in Ham path order.

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

◦ Shortest path is sometimes very hard [Cardinal, Steiner 23]

◦ This work: Efficient optimization implies eff. Hamiltonicity.

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

◦ Algorithmic questions for: diameter, shortest path, etc...

◦ Given all N vertices of P , sort them in Ham path order.

◦ This work: O(nN2) time algorithm. What about O(nN)?

Open questions

• Generalizations to non-binary X .

◦ Much more complicated case. (e.g., Hamiltonicity barrier)

◦ Shortest path is sometimes very hard [Cardinal, Steiner 23]

◦ This work: Efficient optimization implies eff. Hamiltonicity.

• O(TLP)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

◦ This work: O(log n · TLP)-delay.

• Better understanding of the black box.

◦ Amortized analysis (cf. [M, Mütze, Williams 22]).

Thanks for your attention!

• Additional Questions on 0/1 polytopes

◦ Pancyclicity-type result?

◦ Algorithmic questions for: diameter, shortest path, etc...

◦ Given all N vertices of P , sort them in Ham path order.

◦ This work: O(nN2) time algorithm. What about O(nN)?

