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• Many different classes of combinatorial objects

• fundamental algorithmic tasks:

◦ counting,

◦ random sampling,

◦ combinatorial optimization,

◦ combinatorial generation [Knuth TAOCP Vol. 4A].
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◦ polynomial total time: poly(|In|) · poly(|Out|).

◦ polynomial amortized delay: poly(|In|) · |Out|.
=⇒ each new object in poly(|In|) time on average.
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Combinatorial Gray codes

• Listing where consecutive objects differ by a “local change”
→ Gray code (recent survey [Mütze 22])

Examples

◦ binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

◦ n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

◦ bitstrings of length n by bitflips (BRGC) [Gray 53]

◦ spanning trees of a fixed graph by edge exchanges
[Cummings 66]

• All these examples lead to constant (amortized) delay generation algo-
rithms.

• Combinatorial notion that aids in exhaustive generation.
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• This work: Gray codes for binary sets X ⊆ {0, 1}n.

• Natural polytope realization:
→ conv(X ) is a polytope with X as vertices.

• Hamilton paths in conv(X ) are combinatorial Gray codes.

• The edges of conv(X ) capture “local changes” betwen elements of X .
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0/1 Vertex enumeration problem

Given: Inequalities Ax ≤ b that define a 0/1 polytope.

Compute: all vertices of {x ∈ Rn : Ax ≤ b}

• Interesting problem from computational geometry
→ Change from H-representation to V-representation.

Avg. delay

Delay

Generation Gray codes

O(nTLP) [Bussieck, Lübbecke 99] ???
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Min-weight perfect matching Gray codes

Given: A graph G = (V , E ) and a weight function w : E → R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

• Only the bipartite version known:

• X := {χM ∈ {0, 1}m : M is a min-weight perfect matching of G}
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• Fundamental algorithmic tasks:

◦ Counting ← generating functions,

◦ Random sampling ← markov chains,

◦ Optimization ← linear programming, dynamic programming, greedy.

• Combinatorial generation:

◦ Reverse-search [Avis, Fukuda 96]

◦ Backtracking [Folklore]

• Gray codes:

◦ Jump framework [Hartung, Hoang, Mütze, Williams 20]

• Solutions to the four previous problems with ad hoc methods.
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• 0/1 Vertex enumeration:

• Spanning tree Gray codes:

◦ O(log nTLP) delay + Hamilton path in the polytope.

◦ O(m log n) delay.

• Perfect matching Gray codes:

◦ O(m
√

n(log n)5/2) delay.

• Min weight perfect matching Gray codes:

◦ O((mn + n2 log n) log n) delay.

• Many more new Gray codes and applications:

◦ Forests, matchings, matroids, matroid intersection, etc...

• Super versatile!
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Why greedy?

• Hamilton paths where every suffix 0 and 1 appears consecutive.

• Example: (5,3)-combinations

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

◦ X is the leaves of the tree.

◦ The tree “prioritizes” changes in
the shortest prefix.

◦ Our algorithm implictly traverses
this tree

• They have a “tree-like” structure.
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◦ Leftmost branching that leads to something new.

◦ A polytope edge towards its subtree.
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