## Traversing Combinatorial 0/1-Polytopes



Arturo Merino
Saarland University \& Max Planck Institute for Informatics Joint work with Torsten Mütze

## Introduction

- Many different classes of combinatorial objects

binary trees


## Introduction

- Many different classes of combinatorial objects

binary trees

permutations


## Introduction

- Many different classes of combinatorial objects

binary trees

permutations

bitstrings


## Introduction

- Many different classes of combinatorial objects

binary trees

permutations

bitstrings



## Introduction

- Many different classes of combinatorial objects

binary trees

permutations

bitstrings

- fundamental algorithmic tasks:


## Introduction

- Many different classes of combinatorial objects

binary trees

permutations

bitstrings

- fundamental algorithmic tasks:
- counting,


## Introduction

- Many different classes of combinatorial objects

binary trees

permutations

bitstrings

- fundamental algorithmic tasks:
- counting,
- random sampling,


## Introduction

- Many different classes of combinatorial objects

binary trees

permutations

| 000 |
| :--- |
| 001 |
| 010 |
| 011 |
| $\cdots$ |

bitstrings


- fundamental algorithmic tasks:
- counting,
- random sampling,
- combinatorial optimization,


## Introduction

- Many different classes of combinatorial objects

- fundamental algorithmic tasks:
- counting,
- random sampling,
- combinatorial optimization,
- combinatorial generation [Knuth TAOCP Vol. 4A].


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: $\mid$ Out $\mid$ usually exponential.



## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.


| 123 |  |
| :--- | :--- |
| 132 |  |
| 312 |  |
| 321 |  |
| $\cdots$ | $n!$ |


| 000 |  |
| :--- | :--- |
| 001 |  |
| 010 |  |
| 011 |  |
| $\cdots$ | $2^{n}$ |



- Different measures:
- polynomial total time: poly $(|\operatorname{In}|) \cdot \operatorname{poly}(|0 u t|)$.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.


| 123 |  |
| :--- | :--- |
| 132 |  |
| 312 |  |
| 321 |  |
| $\cdots$ | $n!$ |


| 000 |  |
| :--- | :--- |
| 001 |  |
| 010 |  |
| 011 |  |
| $\cdots$ | $2^{n}$ |



- Different measures:
- polynomial total time: poly $(|\operatorname{In}|) \cdot \operatorname{poly}(\mid$ Out $\mid)$.
- polynomial amortized delay: poly $(|\operatorname{In}|) \cdot|O u t|$.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.


| 123 |  |
| :--- | :--- |
| 132 |  |
| 312 |  |
| 321 |  |
| $\cdots$ | $n!$ |



- Different measures:
- polynomial total time: poly $(|\operatorname{In}|) \cdot \operatorname{poly}(\mid$ Out $\mid)$.
- polynomial amortized delay: poly $(|\operatorname{In}|) \cdot|O u t|$.
$\Longrightarrow$ each new object in poly $(|\operatorname{In}|)$ time on average.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.


| 123 |  |
| :--- | :--- |
| 132 |  |
| 312 |  |
| 321 |  |
| $\cdots$ | $n!$ |



- Different measures:
- polynomial total time: poly $(|\operatorname{In}|) \cdot \operatorname{poly}(\mid$ Out $\mid)$.
- polynomial amortized delay: poly $(|\operatorname{In}|) \cdot|O u t|$. $\Longrightarrow$ each new object in poly $(|\operatorname{In}|)$ time on average.
- polynomial delay: each new object in poly $(|\operatorname{In}|)$ time.


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
- polynomial total time: poly $(|\operatorname{In}|) \cdot$ poly $(\mid$ Out $\mid)$.
- polynomial amortized delay: poly $(|\operatorname{In}|) \cdot|O u t|$. $\Longrightarrow$ each new object in poly $(|\operatorname{In}|)$ time on average.
- polynomial delay: each new object in poly $(|\operatorname{In}|)$ time.
- Dream: each new object in constant time (or constant delay)


## Combinatorial generation

- Goal: generate all objects of a combinatorial class efficiently.
- visit each object exactly once.
- Meaning of efficiency: |Out| usually exponential.

- Different measures:
- polynomial total time: poly $(|\operatorname{In}|) \cdot$ poly $(\mid$ Out $\mid)$.
- polynomial amortized delay: poly $(|\operatorname{In}|) \cdot|O u t|$. $\Longrightarrow$ each new object in poly $(|\operatorname{In}|)$ time on average.
- polynomial delay: each new object in poly $(|\operatorname{In}|)$ time.
- Dream: each new object in constant time (or constant delay)
- need that consecutive objects differ in a "local change".


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.


## Examples

- binary trees on $n$ nodes by rotations [Lucas, van Baronaigien, Ruskey 93]


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.


## Examples

- binary trees on $n$ nodes by rotations [Lucas, van Baronaigien, Ruskey 93]
- n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.


## Examples

- binary trees on $n$ nodes by rotations [Lucas, van Baronaigien, Ruskey 93]
- n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]
- bitstrings of length $n$ by bitflips (BRGC) [Gray 53]


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.


## Examples

- binary trees on $n$ nodes by rotations [Lucas, van Baronaigien, Ruskey 93]
- n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]
- bitstrings of length $n$ by bitflips (BRGC) [Gray 53]
- spanning trees of a fixed graph by edge exchanges
[Cummings 66]


## Combinatorial Gray codes

- Listing where consecutive objects differ by a "local change" $\rightarrow$ Gray code (recent survey [Mütze 22])
- Combinatorial notion that aids in exhaustive generation.


## Examples

- binary trees on $n$ nodes by rotations [Lucas, van Baronaigien, Ruskey 93]
- n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]
- bitstrings of length $n$ by bitflips (BRGC) [Gray 53]
- spanning trees of a fixed graph by edge exchanges
[Cummings 66]
- All these examples lead to constant (amortized) delay generation algorithms.


## Gray Codes and Flip Graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations.


## Gray Codes and Flip Graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations.



## Gray Codes and Flip Graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations.



## Gray Codes and Flip Graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations.



## Gray Codes and Flip Graphs

- Flip graph: vertices are combinatorial objects, edges capture change operations.



## Gray Codes and Flip Graphs

- Many flip graphs can be realized as polytopes and posets.



## Gray Codes and Flip Graphs

- Many flip graphs can be realized as polytopes and posets.


Tamari lattice


Base polytope
Q4 Hypercube / Boolean lattice


## Gray Codes and Flip Graphs

- Gray code $\rightarrow$ Hamilton path/cycle on the flip graph


Tamari lattice


Base polytope
$Q_{4}$ Hypercube / Boolean lattice


## Gray Codes and Flip Graphs

- Gray code $\rightarrow$ Hamilton path/cycle on the flip graph


Tamari lattice


Base polytope
Q4 Hypercube /
Boolean lattice


Binary sets and $0 / 1$ polytopes

- This work: Gray codes for binary sets $\mathcal{X} \subseteq\{0,1\}^{n}$.

- 111
${ }^{\bullet} 110$
- 011

000
010

Binary sets and $0 / 1$ polytopes

- This work: Gray codes for binary sets $\mathcal{X} \subseteq\{0,1\}^{n}$.
- Natural polytope realization:
$\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with $\mathcal{X}$ as vertices.



## Binary sets and $0 / 1$ polytopes

- This work: Gray codes for binary sets $\mathcal{X} \subseteq\{0,1\}^{n}$.
- Natural polytope realization:
$\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with $\mathcal{X}$ as vertices.



## Binary sets and $0 / 1$ polytopes

- This work: Gray codes for binary sets $\mathcal{X} \subseteq\{0,1\}^{n}$.
- Natural polytope realization:
$\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with $\mathcal{X}$ as vertices.

- The edges of $\operatorname{conv}(\mathcal{X})$ capture "local changes" betwen elements of $\mathcal{X}$.


## Binary sets and $0 / 1$ polytopes

- This work: Gray codes for binary sets $\mathcal{X} \subseteq\{0,1\}^{n}$.
- Natural polytope realization:
$\rightarrow \operatorname{conv}(\mathcal{X})$ is a polytope with $\mathcal{X}$ as vertices.

- The edges of $\operatorname{conv}(\mathcal{X})$ capture "local changes" betwen elements of $\mathcal{X}$.
- Hamilton paths in $\operatorname{conv}(\mathcal{X})$ are combinatorial Gray codes.

Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.

Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.

Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry
$\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry $\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


|  | Generation | Gray codes |
| :--- | :--- | :--- |
| Avg. delay <br> Delay |  |  |

## Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry $\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay <br> Delay | $\mathcal{O}\left(n T_{L P}\right)$ [Bussieck, Lübbecke 99] |  |

Four $0 / 1$ problems: Vertex enumeration for $0 / 1$ polytopes

## 0/1 Vertex enumeration problem

Given: Inequalities $A x \leq b$ that define a $0 / 1$ polytope.
Compute: all vertices of $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$

- Interesting problem from computational geometry $\rightarrow$ Change from $\mathcal{H}$-representation to $\mathcal{V}$-representation.


|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay <br> Delay | $\mathcal{O}\left(n T_{L P}\right)$ [Bussieck, Lübbecke 99] | ??? |

Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph $G=(V, E), n=|V|, m=|E|$.

Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ s.t. consecutives ones differ by an edge-exchange.

Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ s.t. consecutives ones differ by an edge-exchange.

- $\mathcal{X}:=\left\{\chi_{T} \in\{0,1\}^{m}: T\right.$ is a spanning tree of $\left.G\right\}$

Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ s.t. consecutives ones differ by an edge-exchange.

- $\mathcal{X}:=\left\{\chi_{T} \in\{0,1\}^{m}: T\right.$ is a spanning tree of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees of $G$.


## Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ s.t. consecutives ones differ by an edge-exchange.

- $\mathcal{X}:=\left\{\chi_{T} \in\{0,1\}^{m}: T\right.$ is a spanning tree of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees which differ by an edge exchange.


## Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ st. consecutives ones differ by an edge-exchange.

- $\mathcal{X}:=\left\{\chi_{T} \in\{0,1\}^{m}: T\right.$ is a spanning tree of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees which differ by an edge exchange.

|  | Generation | Gray codes |  |
| :--- | :---: | :---: | :---: |
| Avg. delay |  |  |  |
| Delay |  |  |  |

## Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ s.t. consecutives ones differ by an edge-exchange.

- $\mathcal{X}:=\left\{\chi_{T} \in\{0,1\}^{m}: T\right.$ is a spanning tree of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees which differ by an edge exchange.

|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay | $\mathcal{O}(1)[$ Shioura, Tamura 95] |  |
| Delay | $\mathcal{O}\left(m \log n(\log \log n)^{3}\right)[\mathrm{M}$, Mütze, Williams 22] |  |

## Four 0/1 problems: Spanning tree Gray codes

## Spanning tree Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all spanning trees of $G$ s.t. consecutives ones differ by an edge-exchange.

- $\mathcal{X}:=\left\{\chi_{T} \in\{0,1\}^{m}: T\right.$ is a spanning tree of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ Spanning trees which differ by an edge exchange.

|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay | $\mathcal{O}(1)[$ Shioura, Tamura 95] | $\mathcal{O}(1)$ [Smith 96] |
| Delay | $\mathcal{O}\left(m \log n(\log \log n)^{3}\right)[\mathrm{M}$, Mütze, Williams 22] |  |

Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes
Given: A graph $G=(V, E), n=|V|, m=|E|$.

Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$

Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings of $G$.


## Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings which differ by an alternating cycle.


## Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:


## Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

|  | Generation | Gray codes |
| :--- | :--- | :---: |
| Avg. delay |  |  |
| Delay |  |  |

## Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay | $\mathcal{O}(n)$ [Fukuda, Matsui 94] |  |
| Delay | $\mathcal{O}(m)$ [Fukuda, Matsui 94] |  |

## Four 0/1 problems: Perfect matching Gray codes

## Perfect matching Gray codes

Given: A graph $G=(V, E), n=|V|, m=|E|$.
Compute: all perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay | $\mathcal{O}(n)$ [Fukuda, Matsui 94] | ??? |
| Delay | $\mathcal{O}(m)$ [Fukuda, Matsui 94] |  |

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes
Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.

Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes
Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings of $G$.

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings which differ by an alternating cycle.

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

|  | Generation | Gray codes |
| :--- | :--- | :---: |
| Avg. delay |  |  |
| Delay |  |  |

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay | $\mathcal{O}(m+n)$ [Fukuda, Matsui 92,94] |  |
| Delay | ??? |  |

Four 0/1 problems: Min-weight perfect matchings Gray codes

## Min-weight perfect matching Gray codes

Given: A graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: all minimum weight perfect matchings of $G$ s.t. consecutive ones differ by an alternating cycle.

- $\mathcal{X}:=\left\{\chi_{M} \in\{0,1\}^{m}: M\right.$ is a min-weight perfect matching of $\left.G\right\}$
- Vertices of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings of $G$.
- Edges of $\operatorname{conv}(\mathcal{X}) \leftarrow$ min-weight perfect matchings which differ by an alternating cycle.
- Only the bipartite version known:

|  | Generation | Gray codes |
| :--- | :---: | :---: |
| Avg. delay | $\mathcal{O}(m+n)$ [Fukuda, Matsui 92,94] | ??? |
| Delay | ??? |  |

## Big Hammers

- Solutions to the four previous problems with ad hoc methods.


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,
- Optimization $\leftarrow$ linear programming, dynamic programming, greedy.


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,
- Optimization $\leftarrow$ linear programming, dynamic programming, greedy.
- Combinatorial generation:


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,
- Optimization $\leftarrow$ linear programming, dynamic programming, greedy.
- Combinatorial generation:
- Reverse-search [Avis, Fukuda 96]


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,
- Optimization $\leftarrow$ linear programming, dynamic programming, greedy.
- Combinatorial generation:
- Reverse-search [Avis, Fukuda 96]
- Backtracking [Folklore]


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,
- Optimization $\leftarrow$ linear programming, dynamic programming, greedy.
- Combinatorial generation:
- Reverse-search [Avis, Fukuda 96]
- Backtracking [Folklore]
- Gray codes:


## Big Hammers

- Solutions to the four previous problems with ad hoc methods.
- Fundamental algorithmic tasks:
- Counting $\leftarrow$ generating functions,
- Random sampling $\leftarrow$ markov chains,
- Optimization $\leftarrow$ linear programming, dynamic programming, greedy.
- Combinatorial generation:
- Reverse-search [Avis, Fukuda 96]
- Backtracking [Folklore]
- Gray codes:
- Jump framework [Hartung, Hoang, Mütze, Williams 20]


## Main results

## Thm.

Optimization over $\mathcal{X} \subseteq\{0,1\}^{n}$ can be solved in time $\mathcal{O}(T)$ $\Longrightarrow$
A Hamilton path in $\operatorname{conv}(\mathcal{X})$ can be computed in $\mathcal{O}$ ( $T$ polylog $n$ )-delay.

## Main results

Thm.
Optimization over $\mathcal{X} \subseteq\{0,1\}^{n}$ can be solved in time $\mathcal{O}(T)$ $\Longrightarrow$
A Hamilton path in $\operatorname{conv}(\mathcal{X})$ can be computed in $\mathcal{O}(T$ polylog $n)$-delay.

- Weighted version: Let $c \in \mathbb{R}^{n}$.


## Main results

Thm.
Optimization over $\mathcal{X} \subseteq\{0,1\}^{n}$ can be solved in time $\mathcal{O}(T)$
$\qquad$
A Hamilton path in $\operatorname{conv}(\mathcal{X})$ can be computed in $\mathcal{O}(T$ polylog $n)$-delay.

- Weighted version: Let $c \in \mathbb{R}^{n}$.


## Thm.

Optimization over $\mathcal{X} \subseteq\{0,1\}^{n}$ can be solved in time $\mathcal{O}(T)$ $\Longrightarrow$
Ham. path in conv(arg $\min c x)$ can be computed in $\mathcal{O}(T$ polylog $n)$-delay. $x \in \mathcal{X}$

Black box corollaries

- 0/1 Vertex enumeration:


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.

Best delay for generation algorithms!

## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.

Best amortized delay for generation algorithms!

## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.

Results in non-bipartite graphs!

## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.
- Super versatile!


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.
- Super versatile!
- Many more new Gray codes and applications:


## Black box corollaries

- 0/1 Vertex enumeration:
- $\mathcal{O}\left(\log n T_{L P}\right)$ delay + Hamilton path in the polytope.
- Spanning tree Gray codes:
- $\mathcal{O}(m \log n)$ delay.
- Perfect matching Gray codes:
- $\mathcal{O}\left(m \sqrt{n}(\log n)^{5 / 2}\right)$ delay.
- Min weight perfect matching Gray codes:
- $\mathcal{O}\left(\left(m n+n^{2} \log n\right) \log n\right)$ delay.
- Super versatile!
- Many more new Gray codes and applications:
- Forests, matchings, matroids, matroid intersection, etc...

The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.

The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.

The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,

The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,


## The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to $\mathbf{P 2}$.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to $\mathbf{P 2}$.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to $\mathbf{P 2}$.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to $\mathbf{P 2}$.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to $\mathbf{P 2}$.
- Example:


P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.


## The algorithm

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Always works, no matter $\mathcal{X}, x^{1}$, or choice of $y$.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Always works, no matter $\mathcal{X}, x^{1}$, or choice of $y$.
- Just a conceptual description.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- $y$ is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Otherwise, set $x \leftarrow y$, and go to P2.
- Always works, no matter $\mathcal{X}, x^{1}$, or choice of $y$.
- Just a conceptual description.
- History-free implementation.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$ and $U \leftarrow[n]$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- y is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix of length in $U$,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Else, set $x \leftarrow y$, update $U$, go to $\mathbf{P}$ 2.
- Always works, no matter $\mathcal{X}, x^{1}$, or choice of $y$.
- Just a conceptual description.
- History-free implementation.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$ and $U \leftarrow[n]$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- y is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix of length in $U$,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible. If no such $y$ exists, then terminate. Else, set $x \leftarrow y$, update $U$, go to $\mathbf{P}$ 2.
- Always works, no matter $\mathcal{X}, x^{1}$, or choice of $y$.
- Just a conceptual description.
- History-free implementation.

P1. Select an initial bitstring $x^{1} \in \mathcal{X}$. Set $x \leftarrow x^{1}$ and $U \leftarrow[n]$.
P2. Visit $x$.
P3. Choose a vertex $y \in \mathcal{X}$ such that

- y is unvisited,
- among those, $y$ differs to $x$ in the shortest possible prefix of length in $U$,
- among those, choose $y$ such that $d_{H}(x, y)$ is as small as possible.

If no such $y$ exists, then terminate. Else, set $x \leftarrow y$, update $U$, go to $\mathbf{P}$ 2.

- Always works, no matter $\mathcal{X}, x^{1}$, or choice of $y$.
- Just a conceptual description.
- History-free implementation.
- Reduce to optimization problems

Why greedy works?

- Why it computes Hamilton paths?


## Why greedy works?

- Why it computes Hamilton paths?
- How to implement in a history-free way?


## Why greedy works?

- Why it computes Hamilton paths?
- How to implement in a history-free way?
- Optimization? Where?

Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$.

Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Lemma. If $x_{n} \neq y_{n}$ and $d_{H}(x, y)$ is minimized, among $y$ with $y_{n} \neq x_{n}$, then $x y$ is an edge of the polytope.

Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Lemma. If $x_{n} \neq y_{n}$ and $d_{H}(x, y)$ is minimized, among $y$ with $y_{n} \neq x_{n}$, then $x y$ is an edge of the polytope.

Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.
minimizes Hamming distance

Lemma. If $x_{n} \neq y_{n}$ and $d_{H}(x, y)$ is minimized, among $y$ with $y_{n} \neq x_{n}$, then $x y$ is an edge of the polytope.

Why it works: Hamiltonicity of $0 / 1$ polytopes

- Spiritual Thm. [Naddef, Pulleyblank 84]
$0 / 1$ polytopes are very Hamiltonian.

Prop. For every $v \in \mathcal{X}$ there is a Hamilton path in $\mathcal{X}$ starting from $v$. Pf.


Lemma. If $x_{n} \neq y_{n}$ and $d_{H}(x, y)$ is minimized, among $y$ with $y_{n} \neq x_{n}$, then $x y$ is an edge of the polytope.

## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.


## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.


## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations


## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: $(5,3)$-combinations

$$
\begin{array}{lllllll}
x_{1} & 1 & 1 & 1 & 0 & 0 \\
x_{2} & 1 & 0 & 1 & 1 & 0 \\
x_{3} & 0 & 1 & 1 & 1 & 0 \\
x_{4} & 1 & 1 & 0 & 1 & 0 \\
x_{5} & 1 & 1 & 0 & 0 & 1 \\
x_{6} & 0 & 1 & 1 & 0 & 1 \\
x_{7} & 1 & 0 & 1 & 0 & 1 \\
x_{8} & 1 & 0 & 0 & 1 & 1 \\
x_{9} & 0 & 1 & 0 & 1 & 1 \\
x_{10} & 0 & 0 & 1 & 1 & 1
\end{array}
$$

## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations



## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations



## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations



## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations



## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: $(5,3)$-combinations



## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: (5,3)-combinations

$\circ \mathcal{X}$ is the leaves of the tree.
- The tree "prioritizes" changes in the shortest prefix.


## Why greedy?

- Hamilton paths where every suffix 0 and 1 appears consecutive.
- They have a "tree-like" structure.
- Example: $(5,3)$-combinations

$\circ \mathcal{X}$ is the leaves of the tree.
- The tree "prioritizes" changes in the shortest prefix.
- Our algorithm implictly traverses this tree


## Why optimization?

- What do we need to compute to proceed from $x$ ?



## Why optimization?

- What do we need to compute to proceed from $x$ ?



## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.



## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.



## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.



## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.



## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.


Branching at distance at least $k$ from root

## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.


Branching at distance at least $k$ from root

$$
\exists y \neq x \text { with } x_{n-k} \ldots x_{n} \text { as suffix. }
$$

## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.


Branching at distance at least $k$ from root
$\exists y \neq x$ with $x_{n-k} \ldots x_{n}$ as suffix.
$x$ is not an optimal solution of

$$
\max d_{H}(x, y)
$$

s.t. $y$ has $x_{n-k} \ldots x_{n}$ as a suffix.

## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.


Branching at distance at least $k$ from root $\exists y \neq x$ with $x_{n-k} \ldots x_{n}$ as suffix.
$x$ is not an optimal solution of

$$
\max d_{H}(x, y)
$$

s.t. $y$ has $x_{n-k} \ldots x_{n}$ as a suffix.

- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.


Branching at distance at least $k$ from root

$\exists y \neq x$ with $x_{n-k} \ldots x_{n}$ as suffix.
$\Longleftrightarrow$
$x$ is not an optimal solution of
$\max d_{H}(x, y)$
s.t. $y$ has $x_{n-k} \ldots x_{n}$ as a suffix.

- Optimization problem!
- Do binary search, we obtain $\mathcal{O}(T$ polylog $n)$ time
- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- Being in a subtree prescribes a suffix.
- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- Being in a subtree prescribes a suffix.
- Need to minimize $d_{H}(x, y)$ among them.
- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- Being in a subtree prescribes a suffix.
- Need to minimize $d_{H}(x, y)$ among them.
- Just one more optimization step is needed.
- Fact: $d_{H}(x, y)$ is an affine function for fixed $x$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.



## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- We obtain a runtime of $\mathcal{O}(T$ polylog $n)$.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- We obtain a runtime of $\mathcal{O}(T$ polylog $n)$.
- More tricky: guarantee that branching leads to something new + history-freeness.


## Why optimization?

- What do we need to compute to proceed from $x$ ?
- Leftmost branching that leads to something new.
- A polytope edge towards its subtree.

- We obtain a runtime of $\mathcal{O}(T$ polylog $n)$.
- More tricky: guarantee that branching leads to something new + history-freeness.

Open questions

## Open questions

- Better understanding of the black box.


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: $\operatorname{poly}(n, m)$.


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: $\operatorname{poly}(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: $\operatorname{poly}(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: $\operatorname{poly}(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?
- Algorithmic questions for: diameter, shortest path, etc...


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?
- Algorithmic questions for: diameter, shortest path, etc...
- This work: Efficient optimization implies eff. Hamiltonicity.


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?
- Algorithmic questions for: diameter, shortest path, etc...
- This work: Efficient optimization implies eff. Hamiltonicity.
- Shortest path is sometimes very hard [Cardinal, Steiner 23]


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?
- Algorithmic questions for: diameter, shortest path, etc...
- This work: Efficient optimization implies eff. Hamiltonicity.
- Shortest path is sometimes very hard [Cardinal, Steiner 23]
- Given all $N$ vertices of $P$, sort them in Ham path order.


## Open questions

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?
- Algorithmic questions for: diameter, shortest path, etc...
- This work: Efficient optimization implies eff. Hamiltonicity.
- Shortest path is sometimes very hard [Cardinal, Steiner 23]
- Given all $N$ vertices of $P$, sort them in Ham path order.
$\circ$ This work: $\mathcal{O}\left(n N^{2}\right)$ time algorithm. What about $\mathcal{O}(n N)$ ?


## Thanks for your attention!

- Better understanding of the black box.
- Amortized analysis (cf. [M, Mütze, Williams 22]).
- $\mathcal{O}\left(T_{L P}\right)$-delay vertex enumeration in $0 / 1$ polytopes. Crazy: poly $(n, m)$.
- This work: $\mathcal{O}\left(\log n \cdot T_{L P}\right)$-delay.
- Generalizations to non-binary $\mathcal{X}$.
- Much more complicated case. (e.g., Hamiltonicity barrier)
- Additional Questions on $0 / 1$ polytopes
- Pancyclicity-type result?
- Algorithmic questions for: diameter, shortest path, etc...
- This work: Efficient optimization implies eff. Hamiltonicity.
- Shortest path is sometimes very hard [Cardinal, Steiner 23]
- Given all $N$ vertices of $P$, sort them in Ham path order.
- This work: $\mathcal{O}\left(n N^{2}\right)$ time algorithm. What about $\mathcal{O}(n N)$ ?

