Traversing Combinatorial 0/1-Polytopes

min dy(x*, x)

st. xe X,
xi=1 Vié€elp,
Xi — 0 Vie //:.

Arturo Merino
Saarland University & Max Planck Institute for Informatics
Joint work with Torsten Mutze

I Introduction

e Many different classes of combinatorial objects

A0,

binary trees

I Introduction

e Many different classes of combinatorial objects

123
132
312

321

binary trees permutations

I Introduction

e Many different classes of combinatorial objects

123 000
132 001
010

312
321 011
binary trees permutations bitstrings

I Introduction

e Many different classes of combinatorial objects

123 000
132 001
312 010

A A
321 011 -L .A

binary trees permutations bitstrings spanning trees

I Introduction

e Many different classes of combinatorial objects

123 000
132 001
312 010

A A
321 011 -L .A

binary trees permutations bitstrings spanning trees

e fundamental algorithmic tasks:

I Introduction

e Many different classes of combinatorial objects

e E A4
321 011 ’L *A

binary trees permutations bitstrings spanning trees

e fundamental algorithmic tasks:
o counting,

I Introduction

e Many different classes of combinatorial objects

e E A4
321 011 ’L *A

binary trees permutations bitstrings spanning trees

e fundamental algorithmic tasks:
o counting,
o random sampling,

I Introduction

e Many different classes of combinatorial objects

ANy |l |[AA
321 81(1) ’L *A

binary trees permutations bitstrings spanning trees

e fundamental algorithmic tasks:
o counting,
o random sampling,
o combinatorial optimization,

I Introduction

e Many different classes of combinatorial objects

ANy |l |[AA
321 81(1) ’L *A

binary trees permutations bitstrings spanning trees

e fundamental algorithmic tasks:
o counting,
o random sampling,
o combinatorial optimization,
o combinatorial generation [Knuth TAOCP Vol. 4A].

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 .L.A

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 .L.A

e Different measures:
o polynomial total time: poly(|In|) - poly(|Out|).

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 .L.A

e Different measures:
o polynomial total time: poly(|In|) - poly(|Out|).
o polynomial amortized delay: poly(|In|) - |Out|.

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 .L.A

e Different measures:
o polynomial total time: poly(|In|) - poly(|Out|).
o polynomial amortized delay: poly(|In|) - |Out|.
—> each new object in poly(|In|) time on average.

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 .L.A

e Different measures:
o polynomial total time: poly(|In|) - poly(|Out|).
o polynomial amortized delay: poly(|In|) - |Out|.
—> each new object in poly(|In|) time on average.
o polynomial delay: each new object in poly(|In|) time.

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 .L.A

e Different measures:
o polynomial total time: poly(|In|) - poly(|Out|).
o polynomial amortized delay: poly(|In|) - |Out|.
—> each new object in poly(|In|) time on average.
o polynomial delay: each new object in poly(|In|) time.

e Dream: each new object in constant time (or constant delay)

I Combinatorial generation

e Goal: generate all objects of a combinatorial class efficiently.
o visit each object exactly once.

e Meaning of efficiency: |Out| usually exponential.

AE|E (A4
321 011 oL.A

e Different measures:
o polynomial total time: poly(|In|) - poly(|Out|).
o polynomial amortized delay: poly(|In|) - |Out|.
—> each new object in poly(|In|) time on average.
o polynomial delay: each new object in poly(|In|) time.

e Dream: each new object in constant time (or constant delay)

o need that consecutive objects differ in a “local change”.
S

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

Examples

o binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

Examples
o binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

o n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

Examples
o binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

o n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

o bitstrings of length n by bitflips (BRGC) [Gray 53]

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

Examples
o binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

o n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

o bitstrings of length n by bitflips (BRGC) [Gray 53]

o spanning trees of a fixed graph by edge exchanges
[Cummings 66]

I Combinatorial Gray codes

e Listing where consecutive objects differ by a “local change”
— Gray code (recent survey [Miitze 22])

e Combinatorial notion that aids in exhaustive generation.

Examples
o binary trees on n nodes by rotations [Lucas, van Baronaigien, Ruskey 93]

o n-permutations by adjacent transpositions
(SJT algorithm) [Steinhaus 58], [Johnson 64], [Trotter 62]

o bitstrings of length n by bitflips (BRGC) [Gray 53]

o spanning trees of a fixed graph by edge exchanges
[Cummings 66]

e All these examples lead to constant (amortized) delay generation algo-
rithms.

I Gray Codes and Flip Graphs

e Flip graph: vertices are combinatorial objects, edges capture change
operations.

I Gray Codes and Flip Graphs

e Flip graph: vertices are combinatorial objects, edges capture change
operations.

I Gray Codes and Flip Graphs

e Flip graph: vertices are combinatorial objects, edges capture change
operations.

I Gray Codes and Flip Graphs

e Flip graph: vertices are combinatorial objects, edges capture change
operations.

0001 1001

0101 o111 1111 1101

0100 0110 1110 11100

0000 1000

I Gray Codes and Flip Graphs

e Flip graph: vertices are combinatorial objects, edges capture change
operations.

I Gray Codes and Flip Graphs

e Many flip graphs can be realized as polytopes and posets.

I Gray Codes and Flip Graphs

e Many flip graphs can be realized as polytopes and posets.

1, Permutahedron /

weak order a4
14 4
Associahedron / 1234
Tamari lattice
0001 1001 Base polytope
0101 0111 1111 1101 Q4 HyperCUbe /
0100 0110 110 1100 Boolean lattice
0000 1000

I Gray Codes and Flip Graphs

e Gray code — Hamilton path/cycle on the flip graph

1, Permutahedron /

weak order a4
14 4
Associahedron / 1234
Tamari lattice
0001 1001 Base polytope
0101 0111 1111 1101 Q4 HyperCUbe /
0100 0110 110 1100 Boolean lattice
0000 1000

I Gray Codes and Flip Graphs

e Gray code — Hamilton path/cycle on the flip graph

1, Permutahedron / |
weak order N

Associahedron / 1234
Tamari lattice

Base polytope

Q4 Hypercube /
Boolean lattice

I Binary sets and 0/1 polytopes

e This work: Gray codes for binary sets X C {0,1}".

® 111
100
¢ ®110
® (011
o ®
000 010

I Binary sets and 0/1 polytopes

e This work: Gray codes for binary sets X C {0,1}".

e Natural polytope realization:
— conv(X) is a polytope with X as vertices.

® 111
100
¢ ®110
® (011
o ®
000 010

I Binary sets and 0/1 polytopes

e This work: Gray codes for binary sets X C {0,1}".

e Natural polytope realization:
— conv(X) is a polytope with X as vertices.

111
100

011
000 010

I Binary sets and 0/1 polytopes

e This work: Gray codes for binary sets X C {0,1}".

e Natural polytope realization:
— conv(X') is a polytope with X" as vertices.

111

1 11
100 e T

ﬁ

—>» 011 m

000 010

e The edges of conv(X) capture “local changes” betwen elements of X

I Binary sets and 0/1 polytopes

e This work: Gray codes for binary sets X C {0,1}".

e Natural polytope realization:
— conv(X') is a polytope with X" as vertices.

111

100 110
100 __eeee? N\

ﬁ

—>» 011 m

000 010

e The edges of conv(X) capture “local changes” betwen elements of X

e Hamilton paths in conv(X’) are combinatorial Gray codes.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

/

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

- <

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

- <

Generation Gray codes

Avg. delay

Delay

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

- <

Generation Gray codes

Avg. del
vg. aelay O(n TLP) [Bussieck, Liibbecke 99]

Delay

I Four 0/1 problems: Vertex enumeration for 0/1 polytopes

0/1 Vertex enumeration problem
Given: Inequalities Ax < b that define a 0/1 polytope.
Compute: all vertices of {x € R" : Ax < b}

e Interesting problem from computational geometry
— Change from H-representation to V-representation.

- <

Generation Gray codes

Avg. dela
e ¢ O(nT.p) [Bussieck, Liibbecke 99] 777

Delay

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E|.

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

o X :={x7€{0,1}": T is a spanning tree of G}

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

o X :={x7€{0,1}": T is a spanning tree of G}

e Vertices of conv(X') <~ Spanning trees of G.

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

o X :={x7€{0,1}": T is a spanning tree of G}
e Vertices of conv(X') <~ Spanning trees of G.

e Edges of conv(X') < Spanning trees which differ by an edge exchange.

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

o X :={x7€{0,1}": T is a spanning tree of G}
e Vertices of conv(X') <~ Spanning trees of G.

e Edges of conv(X') < Spanning trees which differ by an edge exchange.

Generation Gray codes

Avg. delay

Delay

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

o X :={x7€{0,1}": T is a spanning tree of G}
e Vertices of conv(X') <~ Spanning trees of G.

e Edges of conv(X') < Spanning trees which differ by an edge exchange.

Generation Gray codes

Avg. delay (9(1) [Shioura, Tamura 95]

Delay O(mlog n(loglog n)?) [M, Miitze, Williams 22]

I Four 0/1 problems: Spanning tree Gray codes

Spanning tree Gray codes
Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all spanning trees of G s.t. consecutives ones differ by an
edge-exchange.

o X :={x7€{0,1}": T is a spanning tree of G}
e Vertices of conv(X') <~ Spanning trees of G.

e Edges of conv(X') < Spanning trees which differ by an edge exchange.

Generation Gray codes

Avg. delay (9(1) [Shioura, Tamura 95] 0(1) [Smith 96]

Delay O(mlog n(loglog n)?) [M, Miitze, Williams 22]

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes
Given: A graph G = (V,E), n=|V|, m= |E|.

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}

e Vertices of conv(X) < perfect matchings of G.

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}
e Vertices of conv(X) < perfect matchings of G.

e Edges of conv(X) < perfect matchings which differ by an alternating
cycle.

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}
e Vertices of conv(X) < perfect matchings of G.

e Edges of conv(X) < perfect matchings which differ by an alternating
cycle.

e Only the bipartite version known:

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}
e Vertices of conv(X) < perfect matchings of G.

e Edges of conv(X) < perfect matchings which differ by an alternating
cycle.

e Only the bipartite version known:

Generation Gray codes

Avg. delay

Delay

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}
e Vertices of conv(X) < perfect matchings of G.

e Edges of conv(X) < perfect matchings which differ by an alternating
cycle.

e Only the bipartite version known:

Generation Gray codes

Avg. delay O(n) [Fukuda, Matsui 94]
Delay O(m) [Fukuda, Matsui 94]

I Four 0/1 problems: Perfect matching Gray codes

Perfect matching Gray codes

Given: A graph G = (V,E), n=|V|, m= |E]|.

Compute: all perfect matchings of G s.t. consecutive ones differ by an
alternating cycle.

o X :={xme{0,1}™: Mis a perfect matching of G}
e Vertices of conv(X) < perfect matchings of G.

e Edges of conv(X) < perfect matchings which differ by an alternating
cycle.

e Only the bipartite version known:

Generation Gray codes

Avg. delay O(n) [Fukuda, Matsui 94]
Delay O(m) [Fukuda, Matsui 94]

277

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes
Given: A graph G = (V, E) and a weight function w : E — R.

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}

e Vertices of conv(X) <— min-weight perfect matchings of G.

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}
e Vertices of conv(X) <— min-weight perfect matchings of G.

e Edges of conv(X) < min-weight perfect matchings which differ by an
alternating cycle.

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}
e Vertices of conv(X) <— min-weight perfect matchings of G.

e Edges of conv(X) < min-weight perfect matchings which differ by an
alternating cycle.

e Only the bipartite version known:

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}
e Vertices of conv(X) <— min-weight perfect matchings of G.

e Edges of conv(X) < min-weight perfect matchings which differ by an
alternating cycle.

e Only the bipartite version known:

Generation Gray codes

Avg. delay
Delay

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}
e Vertices of conv(X) <— min-weight perfect matchings of G.

e Edges of conv(X) < min-weight perfect matchings which differ by an
alternating cycle.

e Only the bipartite version known:

Generation Gray codes
Avg. delay | O(m + n) [Fukuda, Matsui 92,94]
Delay 777

I Four 0/1 problems: Min-weight perfect matchings Gray codes

Min-weight perfect matching Gray codes

Given: A graph G = (V, E) and a weight function w : E — R.

Output: all minimum weight perfect matchings of G s.t. consecutive ones
differ by an alternating cycle.

e X :={xme{0,1}™: Mis a min-weight perfect matching of G}
e Vertices of conv(X) <— min-weight perfect matchings of G.

e Edges of conv(X) < min-weight perfect matchings which differ by an
alternating cycle.

e Only the bipartite version known:

Generation Gray codes
Avg. delay | O(m + n) [Fukuda, Matsui 92,94]
Delay 777

277

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting <— generating functions,

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting <— generating functions,
o Random sampling < markov chains,

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting < generating functions,
o Random sampling <— markov chains,
o Optimization < linear programming, dynamic programming, greedy.

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting < generating functions,
o Random sampling <— markov chains,
o Optimization < linear programming, dynamic programming, greedy.

e Combinatorial generation:

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting < generating functions,
o Random sampling <— markov chains,
o Optimization < linear programming, dynamic programming, greedy.

e Combinatorial generation:
o Reverse-search [Avis, Fukuda 96]

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting < generating functions,
o Random sampling <— markov chains,
o Optimization < linear programming, dynamic programming, greedy.

e Combinatorial generation:
o Reverse-search [Avis, Fukuda 96]
o Backtracking [Folklore]

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting < generating functions,
o Random sampling <— markov chains,
o Optimization < linear programming, dynamic programming, greedy.

e Combinatorial generation:
o Reverse-search [Avis, Fukuda 96]
o Backtracking [Folklore]

e Gray codes:

I Big Hammers

e Solutions to the four previous problems with ad hoc methods.

e Fundamental algorithmic tasks:
o Counting < generating functions,
o Random sampling <— markov chains,
o Optimization < linear programming, dynamic programming, greedy.

e Combinatorial generation:
o Reverse-search [Avis, Fukuda 96]
o Backtracking [Folklore]

e Gray codes:
o Jump framework [Hartung, Hoang, Miitze, Williams 20]

I Main results

— Thm.

Optimization over X C {0, 1}" can be solved in time O(T)
—
A Hamilton path in conv(X') can be computed in O(T polylog n)-delay.

I Main results

— Thm.

Optimization over X C {0, 1}" can be solved in time O(T)
—
A Hamilton path in conv(X') can be computed in O(T polylog n)-delay.

e Weighted version: Let c € R".

I Main results

— Thm.

Optimization over X C {0, 1}" can be solved in time O(T)
—
A Hamilton path in conv(X') can be computed in O(T polylog n)-delay.

e Weighted version: Let c € R".

— Thm.

Optimization over X C {0, 1}" can be solved in time O(T)
—

Ham. path in conv(arg min cx) can be computed in O(T polylog n)-delay.
xeX

I Black box corollaries

e 0/1 Vertex enumeration:

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:
o O((mn + n?log n)log n) delay.

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT,p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.
e Min weight perfect matching Gray codes:

o O((mn + n?log n) log n) delay.

Best delay for generation algorithms!

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT,p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.
e Min weight perfect matching Gray codes:

o O((mn + n?log n) log n) delay.

Best amortized delay for generation algorithms!

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(m+/n(log n)/?) delay.
e Min weight perfect matching Gray codes:

o O((mn + n?log n) log n) delay.

Results in non-bipartite graphs!

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:
o O((mn + n?log n)log n) delay.

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:
o O((mn + n?log n)log n) delay.

e Super versatile!

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:
o O((mn + n?log n)log n) delay.

e Super versatile!

e Many more new Gray codes and applications:

I Black box corollaries

e 0/1 Vertex enumeration:
o O(lognT.p) delay + Hamilton path in the polytope.

e Spanning tree Gray codes:
o O(mlog n) delay.

e Perfect matching Gray codes:
o O(my/n(log n)/?) delay.

e Min weight perfect matching Gray codes:
o O((mn + n?log n)log n) delay.

e Super versatile!

e Many more new Gray codes and applications:
o Forests, matchings, matroids, matroid intersection, etc...

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that

o y Is unvisited,

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that

o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that

o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,
o among those, choose y such that dy(x, y) is as small as possible.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x <— y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x <— y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x <— y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» (011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» (011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x <— y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» 011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» (011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» (011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Example: 111
110
—>» (011

010

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Always works, no matter X', x!, or choice of y.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Always works, no matter X', x!, or choice of y.

e Just a conceptual description.

I The algorithm

P1. Select an initial bitstring x! € X. Set x + x1.
P2. Visit x.

P3. Choose a vertex y € X such that
o y Is unvisited,
o among those, y differs to x in the shortest possible prefix,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Otherwise, set x < y, and go to P2.

e Always works, no matter X', x!, or choice of y.

e Just a conceptual description.

e History-free implementation.

I The algorithm

P1. Select an initial bitstring x! € X'. Set x + x! and U < [n].
P2. Visit x.

P3. Choose a vertex y € X such that
o sited-
o among those, y differs to x in the shortest possible prefix of length in U,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Else, set x +— y, update U, go to P2.

e Always works, no matter X', x!, or choice of y.

e Just a conceptual description.

e History-free implementation.

I The algorithm

P1. Select an initial bitstring x! € X'. Set x + x! and U < [n].
P2. Visit x.

P3. Choose a vertex y € X such that
o sited-
o among those, y differs to x in the shortest possible prefix of length in U,

o among those, choose y such that dy(x, y) is as small as possible.
If no such y exists, then terminate. Else, set x +— y, update U, go to P2.

e Always works, no matter X', x!, or choice of y.

e Just a conceptual description.

e History-free implementation.

I The algorithm

P1. Select an initial bitstring x! € X'. Set x + x! and U < [n].
P2. Visit x.

P3. Choose a vertex y € X such that

o yis unvisited

o among those, y differs to x in the shortest possible prefix of length in U,

o among those, choose y such that dy(x, y) is as small as possible.
| If no such y exists, then terminate. Else, set x +— y, update U, go to P2.

e Always works, no matter X', x!, or choice of y.

e Just a conceptual description.
e History-free implementation.

e Reduce to optimization problems

I Why greedy works?

e Why it computes Hamilton paths?

I Why greedy works?

e Why it computes Hamilton paths?

e How to implement in a history-free way?

I Why greedy works?

e Why it computes Hamilton paths?
e How to implement in a history-free way?

e Optimization? Where?

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X starting from v.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

Start

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

X, =0

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

X, =0

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X starting from v.
Pf.

Lemma. If x, # y, and dy(x, y) is minimized, among y with y, # x,, then
xy is an edge of the polytope.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X starting from v.
Pf.

minimizes
Hamming
distance

Lemma. If x, # y, and dy(x, y) is minimized, among y with y, # x,, then
xy is an edge of the polytope.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

minimizes
Hamming
distance

Lemma. If x, # y, and dy(x, y) is minimized, among y with y, # x,, then
xy is an edge of the polytope.

I Why it works: Hamiltonicity of 0/1 polytopes

— Spiritual Thm. [Naddef, Pulleyblank 84]

0/1 polytopes are very Hamiltonian.

Prop. For every v € X there is a Hamilton path in X" starting from v.
Pf.

Start

minimizes
Hamming
distance

—

Lemma. If x, # y, and dy(x, y) is minimized, among y with y, # x,, then
xy i1s an edge of the polytope.

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

X1 11100
X2 10110
Xx301110
Xa 11010
X5 11001
X6 01101
X7 10101
X8 10011
X9 01011
X0 00111

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

PR RO OOO

&
oo~
(]] (@) (@] L (e |l Ll (O] [
—lo o~ ~lolol~ ~|—~
= =oo ok ko

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

110
1/0

(]] (@) (@] L (e |l Ll (O] [

&
oo~

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

X]_ ® ® ®
X2 | ool

X3 -——-/>;7/
X4 ® ®

X5 ® ®

X6 | 1o

X7 ° />/
Xg | o1

x10 [

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

X5 o X i1s the leaves of the tree.

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

X5 o X i1s the leaves of the tree.

o The tree “prioritizes” changes in
X4 the shortest prefix.

I Why greedy?

e Hamilton paths where every suffix 0 and 1 appears consecutive.
e They have a “tree-like” structure.
e Example: (5,3)-combinations

X]_ ® ® ®

X5 o X is the leaves of the tree.

X3 o The tree “prioritizes” changes in
X4 the shortest prefix.

X5

X6 o Our algorithm implictly traverses
X7 this tree

X8

X9

I Why optimization?

e \What do we need to compute to proceed from x?

I Why optimization?

e \What do we need to compute to proceed from x?

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

Branching at distance at least k from root
X :>\/

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

Branching at distance at least k from root
<~
dy # x with x,_x ... x, as suffix.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

Branching at distance at least k from root
<~

X
dy # x with x,_x ... x, as suffix.
—
x is not an optimal solution of
y

max dy(x, y)
s.t. y has x,_x ...x, as a suffix.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

Branching at distance at least k from root
<~

X
dy # x with x,_x ... x, as suffix.
—
x is not an optimal solution of
y

max dy(x, y)
s.t. y has x,_x ...x, as a suffix.

<
k

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

Branching at distance at least k from root
<~

X
dy # x with x,_x ... x, as suffix.
—
x is not an optimal solution of
y

max dy(x, y)
s.t. y has x,_x ...x, as a suffix.

< o Optimization problem!

k o Do binary search, we obtain O(T polylog n) time.

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

o Being in a subtree prescribes a suffix.

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

o Being in a subtree prescribes a suffix.

o Need to minimize dy(x, y) among them.

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

o Being in a subtree prescribes a suffix.

o Need to minimize dy(x, y) among them.

o Just one more optimization step is needed.

e Fact: dy(x,y) is an affine function for fixed x.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

e We obtain a runtime of O(T polylog n).

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

e We obtain a runtime of O(T polylog n).

e More tricky: guarantee that branching leads to something new +
history-freeness.

I Why optimization?

e \What do we need to compute to proceed from x?
o Leftmost branching that leads to something new.
o A polytope edge towards its subtree.

e We obtain a runtime of O(T polylog n).

e More tricky: guarantee that branching leads to something new +
history-freeness.

I Open questions

I Open questions

e Better understanding of the black box.

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?
o Algorithmic questions for: diameter, shortest path, etc...

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?
o Algorithmic questions for: diameter, shortest path, etc...
o This work: Efficient optimization implies eff. Hamiltonicity.

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?
o Algorithmic questions for: diameter, shortest path, etc...
o This work: Efficient optimization implies eff. Hamiltonicity.
o Shortest path is sometimes very hard [Cardinal, Steiner 23]

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?
o Algorithmic questions for: diameter, shortest path, etc...
o This work: Efficient optimization implies eff. Hamiltonicity.
o Shortest path is sometimes very hard [Cardinal, Steiner 23]
o Given all N vertices of P, sort them in Ham path order.

I Open questions

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?
o Algorithmic questions for: diameter, shortest path, etc...
o This work: Efficient optimization implies eff. Hamiltonicity.
o Shortest path is sometimes very hard [Cardinal, Steiner 23]
o Given all N vertices of P, sort them in Ham path order.

o This work: O(nN?) time algorithm. What about O(nN)?

J Oven questions Thanks for your attention!

e Better understanding of the black box.
o Amortized analysis (cf. [M, Miitze, Williams 22]).

e O(T,.p)-delay vertex enumeration in 0/1 polytopes. Crazy: poly(n, m).
o This work: O(logn - T, p)-delay.

e Generalizations to non-binary X.
o Much more complicated case. (e.g., Hamiltonicity barrier)

e Additional Questions on 0/1 polytopes
o Pancyclicity-type result?
o Algorithmic questions for: diameter, shortest path, etc...
o This work: Efficient optimization implies eff. Hamiltonicity.
o Shortest path is sometimes very hard [Cardinal, Steiner 23]
o Given all N vertices of P, sort them in Ham path order.

o This work: O(nN?) time algorithm. What about O(nN)?

