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s-weak order

Motivation

Credit: Pons ’19.
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s-weak order Combinatorial families

s-decreasing trees (Ceballos-Pons ’20)

Let s be a weak composition (si ≥ 0).

An s-decreasing tree is a planar rooted tree on n internal vertices, labeled on [n].

Each vertex labeled i has si + 1 children and any descendant j of i satisfies j < i.
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Figure 1: A (0, 0, 2, 1, 3)-decreasing tree.
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s-weak order Combinatorial families

If R,T are s-decreasing trees, the s-weak order E is given by R E T iff
inv(R) ⊆ inv(T).
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Credit: Ceballos, Pons ’19.

Figure 2: The lattice of (0, 1, 2)-decreasing trees.
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s-weak order Combinatorial families

s-Stirling permutations

Let s be a composition (si > 0). s-decreasing trees are associated to
permutations of 1s1 · · · nsn called s-Stirling permutations (also called
121-avoiding s-permutations).
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Figure 3: A (1, 1, 2, 2)-decreasing tree corresponding to 313442.
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s-weak order Combinatorial families

s-weak order

Credit: Ceballos-Pons ’19. 12233
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Figure 4: The (1, 2, 2)-weak order.
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s-weak order Combinatorial families

Conjecture 1 (Ceballos-Pons ’19)
The s-permutahedron can be realized as a polyhedral subdivision of a polytope
which is combinatorially isomorphic to a zonotope.

Credit: Ceballos-Pons ’19.
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s-weak order Flows on graphs

Flows on graphs

Take a digraph G on vertices {v0, . . . , vn}.

v0 v1 v2 v3 v4
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s-weak order Flows on graphs

Flows on graphs

Associate to the vertices a netflow a = (a0, . . . , an) where a0 ≥ 0 and
an = −

∑
ai.

2 −1 1 3 −5
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s-weak order Flows on graphs

Flows on graphs

An admissible flow of G with netflow a is a labelling of the edges f ∈ RE
≥0 such

that
ai +

∑
e∈in(i)

fe =
∑

e∈out(i)

fe
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s-weak order Flows on graphs

Flows on graphs

An integer flow of G is a such a labeling of the edges.

2 −1 1 3 −5
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s-weak order Flows on graphs

Flows on graphs

The flow polytope FG(a) is the convex hull of all admissible flows with netflow
a.
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Geometric realizations From subdivisions of flow polytope

Why flow polytope?

Although they live in RE they have dimension |E| − |V|+ 1.

Their integer points are nice. In the case i = (1, 0, . . . , 0,−1), the vertices
of FG(i) are the indicator vectors of the routes of G.
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They have nice triangulations.
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Geometric realizations From subdivisions of flow polytope

Which flow polytope?

Given a composition s = (s1, . . . , sn), Gs is the multi-digraph on {v−1, . . . , vn}
such that there is

1 edge (v−1, v0),

2 edges (vi, vi+1) for i ∈ {0, . . . , n− 1},
sn+1−i − 1 edges (v−1, vi).

The graph G(2,3,2,2).
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Geometric realizations From subdivisions of flow polytope

Framings and coherence

A framing is a total order on the in-edges and out-edges of each vertex.
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A pair of routes are coherent if wherever they meet they have the same order of
entrance and of exit.

A maximal clique C is a maximal set of coherent routes.
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Geometric realizations From subdivisions of flow polytope

Triangulations

Theorem (Mészáros, Morales, Striker, 12’)

The maximal cliques of a framed graph (G,�) are in bijection with the integer
flows of FG(d) where di = indeg(vi)− 1.
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Geometric realizations From subdivisions of flow polytope

Danilov-Karzanov-Koshevoy Triangulations

For a clique C, ∆C denotes the simplex with vertices the indicator vectors of
the routes in C.

Theorem (DKK, 12)

The maximal simplices ∆C form a regular triangulation of FG(i), called the
DKK triangulation of FG(i) with respect to the framing �.

l0w = l1w =

l2w =

l3w = l4w =
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Geometric realizations From subdivisions of flow polytope

Theorem (GMPTY, 22’)
The s-decreasing trees are in bijection with the simplices of the DKK
triangulation of (FGs ,�).
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Figure 6: Example for s = (1, 2, 1).
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Geometric realizations From subdivisions of flow polytope

Theorem (GMPTY, 22’)
Moreover, two simplices are adjacent if and only if there is a cover relation in
the s-weak order.
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Figure 7: Dual of the DKK triangulation for s = (1, 2, 1).
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Geometric realizations From subdivisions of flow polytope

Problem: This lives in dimension m− n + 1 not n− 1.
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Figure 8: Dual of the DKK triangulation for s = (1, 2, 1).
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Geometric realizations Via the Cayley trick

Minkowski sums

Given polytopes P1, . . . ,Pk in Rn, their Minkowski sum is the polytope
P1 + . . .+ Pk := {x1 + . . .+ xk | xi ∈ Pi}.

+ =
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Given polytopes P1, . . . ,Pk in Rn, their Minkowski sum is the polytope
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Bi where Bi is the convex hull of a

subset of vertices of Pi.
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Geometric realizations Via the Cayley trick

Minkowski sums

Given polytopes P1, . . . ,Pk in Rn, their Minkowski sum is the polytope
P1 + . . .+ Pk := {x1 + . . .+ xk | xi ∈ Pi}.
The Minkowski cells of the sum are

∑
Bi where Bi is the convex hull of a

subset of vertices of Pi.
A mixed subdivision of a Minkowski sum is a collection of Minkowski
cells such that their union covers the Minkowski sum and they intersect
properly.
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Geometric realizations Via the Cayley trick

Minkowski sums

Given polytopes P1, . . . ,Pk in Rn, their Minkowski sum is the polytope
P1 + . . .+ Pk := {x1 + . . .+ xk | xi ∈ Pi}.
The Minkowski cells of the sum are

∑
Bi where Bi is the convex hull of a

subset of vertices of Pi.
A mixed subdivision is a collection of Minkowski cells whose union
covers the Minkowski sum and they intersect properly.
A fine mixed subdivision is a minimal mixed subdivision via containment.
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Geometric realizations Via the Cayley trick

Cayley Trick

C(P1, . . . ,Pk) := conv({e1} × P1, . . . , {ek} × Pk) ⊂ Rk × Rn is the Cayley
embedding of P1, . . . ,Pk.

Proposition (The Cayley trick)

The (regular) polytopal subdivisions (resp. triangulations) of C(P1, . . . ,Pk) are
in bijection with the (coherent) mixed subdivisions (resp. fine mixed
subdivisions) of P1 + . . .+ Pk.
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Geometric realizations Via the Cayley trick

Flow polytopes are Cayley embeddings

Theorem (GMPTY, 22’)

The s-decreasing trees are in bijection with the maximal cells of a fine mixed
subdivision of the Minkowski sum of hypercubes in Rn−1 given by

(sn + 1)�n−1 +
n−1∑
i=1

(si − 1)�i−1.

Proof : The flow polytope of Gs is a Cayley embedding of hypercubes.
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Geometric realizations Via the Cayley trick

Mixed subdivision of hypercubes
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Figure 9: (a) Summands of the Minkowski cell corresponding to w = 3221.
(b) Mixed subdivision of 2�2 +�1 leading to the (1, 2, 1)-permutahedron.
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Geometric realizations With tropical geometry

From the mixed subdivision to a dual polyhedral complex
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Geometric realizations With tropical geometry

Problem: This dual does not give explicit coordinates.
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Geometric realizations With tropical geometry

Tropicalizing triangulations

A regular subdivision S of a point configuration A can be obtained as the lower
faces of the points of A lifted by an admissible height function h.

Credit: Rambau ’96

Such lifted configuration corresponds to the tropical polynomial (in the
min-plus algebra):

F(x) =
⊕
i∈[m]

hi � xai
= min

{
hi + 〈ai, x〉 | i ∈ [m]

}
.
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Geometric realizations With tropical geometry

The tropical polynomial

F(x) =
⊕
i∈[m]

hi � xai
= min

{
hi + 〈ai, x〉 | i ∈ [m]

}
.

gives the tropical hypersurface defined by F, or vanishing locus of F as

T (F) :=
{

x ∈ Rd | the minimum of F(x) is attained at least twice
}
.

Theorem (Folklore)
There is a bijection between the k-dimensional cells of S and the
(n− k)-dimensional cells of T (F). The bounded cells of T (F) corresponds to
the interior cells of S .

Cayley case
When A is a Cayley embedding, the tropical phenomena described here can be
extended to the mixed subdivision obtained after the Cayley trick.

Daniel Tamayo Jiménez s-Permutahedra via Flow Polytopes 28 / 32



Geometric realizations With tropical geometry

Theorem (GMPTY, 23’)
Let s be a composition and h an admissible height function for the DKK
traingulation of (Gs,�). The tropical dual of the Cayley mixed subdivision is
the polyhedral complex of cells induced by the arrangement of tropical
hypersurfaces

Hs,h =
{
T (Fj

t) | j ∈ [2, n + 1], t ∈ [sj − 1]
}
,

where Fj
t(x) =

⊕
δ∈{0,1}j−1 −h(R(j, t, δ))� xδ and R(j, t, δ) denotes a route in

Gs.

Theorem (GMPTY, 23’)

The vertices v(w) of the arrangementHs,h are in bijection with Stirling
s-permutations w and have coordinates

v(w)a =

sa∑
t=1

(
h(li(a

t)
w )− h(li(a

t)+1
w )

)
.

for a ∈ [n].Daniel Tamayo Jiménez s-Permutahedra via Flow Polytopes 29 / 32



Geometric realizations With tropical geometry

Final realizations

Figure 10: The 1112-permutahedron (left) and the 1222-permutahedron (right) via their
tropical realization.
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Geometric realizations With tropical geometry
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Geometric realizations With tropical geometry

Thank you!
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Geometric realizations With tropical geometry

Theorem
Let s be a composition. Let ε > 0 be a small enough real number.
Let h be the function that associates to a route R = (ek

tk , . . . , e
1
t1) of GS the

quantity

h(R) = −
k−1∑
q=1

εq

k−q∑
j=1

(tj+q + δj)
2

 ,

where δj =

{
0 if tj = 0,
1 if tj = sj

for all j ∈ [k − 1].

Then h is an admissible height function for the DKK triangulation of Gs.
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Geometric realizations With tropical geometry
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