Realizing the s-Permutahedron via Flow Polytopes

Daniel Tamayo Jiménez

Université Paris-Saclay (LISN)
Joint work with Rafael S. González D'León, Alejandro H. Morales, Eva Philippe, and Martha Yip

Weissensee Workshop
PAGCAP
May 15, 2023

Outline

(1) s-weak order

- Combinatorial families
- Flows on graphs
(2) Geometric realizations
- From subdivisions of flow polytope
- Via the Cayley trick
- With tropical geometry

Motivation

Motivation

Weak order \mid Permutahedron

s-decreasing trees (Ceballos-Pons '20)

Let s be a weak composition $\left(s_{i} \geq 0\right)$.
An s-decreasing tree is a planar rooted tree on n internal vertices, labeled on $[n]$.
Each vertex labeled i has $s_{i}+1$ children and any descendant j of i satisfies $j<i$.

Figure 1: $\mathrm{A}(0,0,2,1,3)$-decreasing tree.

If R, T are s-decreasing trees, the s-weak order \unlhd is given by $R \unlhd T$ iff $\operatorname{inv}(R) \subseteq \operatorname{inv}(T)$.

Credit: Ceballos, Pons '19.
Figure 2: The lattice of $(0,1,2)$-decreasing trees.

s-Stirling permutations

Let s be a composition $\left(s_{i}>0\right)$. s-decreasing trees are associated to permutations of $1^{s_{1}} \cdots n^{s_{n}}$ called s-Stirling permutations (also called 121-avoiding s-permutations).

Figure 3: $\mathrm{A}(1,1,2,2)$-decreasing tree corresponding to 313442.

s-weak order

Figure 4: The (1,2,2)-weak order.

Conjecture 1 (Ceballos-Pons '19)

The s-permutahedron can be realized as a polyhedral subdivision of a polytope which is combinatorially isomorphic to a zonotope.

Credit: Ceballos-Pons '19.

Flows on graphs

Take a digraph G on vertices $\left\{v_{0}, \ldots, v_{n}\right\}$.

Flows on graphs

Associate to the vertices a netflow $\mathbf{a}=\left(a_{0}, \ldots, a_{n}\right)$ where $a_{0} \geq 0$ and $a_{n}=-\sum a_{i}$.

Flows on graphs

An admissible flow of G with netflow a is a labelling of the edges $f \in \mathbb{R}_{\geq}^{E} 0$ such that

$$
a_{i}+\sum_{e \in \operatorname{in}(i)} f_{e}=\sum_{e \in \operatorname{out}(i)} f_{e}
$$

Flows on graphs

An integer flow of G is a such a labeling of the edges.

Flows on graphs

The flow polytope $\mathcal{F}_{G}(\mathbf{a})$ is the convex hull of all admissible flows with netflow a.

Why flow polytope?

- Although they live in \mathbb{R}^{E} they have dimension $|E|-|V|+1$.
- Their integer points are nice. In the case $\mathbf{i}=(1,0, \ldots, 0,-1)$, the vertices of $\mathcal{F}_{G}(\mathbf{i})$ are the indicator vectors of the routes of G.

- They have nice triangulations.

Which flow polytope?

Given a composition $s=\left(s_{1}, \ldots, s_{n}\right), G_{s}$ is the multi-digraph on $\left\{v_{-1}, \ldots, v_{n}\right\}$ such that there is

- 1 edge $\left(v_{-1}, v_{0}\right)$,
- 2 edges $\left(v_{i}, v_{i+1}\right)$ for $i \in\{0, \ldots, n-1\}$,
- $s_{n+1-i}-1$ edges $\left(v_{-1}, v_{i}\right)$.

The graph $G_{(2,3,2,2)}$.

Framings and coherence

A framing is a total order on the in-edges and out-edges of each vertex.

A pair of routes are coherent if wherever they meet they have the same order of entrance and of exit.

A maximal clique C is a maximal set of coherent routes.

Triangulations

Theorem (Mészáros, Morales, Striker, 12’)
The maximal cliques of a framed graph (G, \preceq) are in bijection with the integer flows of $\mathcal{F}_{G}(\mathbf{d})$ where $d_{i}=\operatorname{indeg}\left(v_{i}\right)-1$.

Danilov-Karzanov-Koshevoy Triangulations

For a clique C, Δ_{C} denotes the simplex with vertices the indicator vectors of the routes in C.

Theorem (DKK, 12)
The maximal simplices Δ_{C} form a regular triangulation of $\mathcal{F}_{G}(\mathbf{i})$, called the DKK triangulation of $\mathcal{F}_{G}(\mathbf{i})$ with respect to the framing \preceq.

Theorem (GMPTY, 22')

The s-decreasing trees are in bijection with the simplices of the DKK triangulation of $\left(\mathcal{F}_{G_{s}}, \preceq\right)$.

Theorem (GMPTY, 22’)

Moreover, two simplices are adjacent if and only if there is a cover relation in the s-weak order.

Figure 7: Dual of the DKK triangulation for $s=(1,2,1)$.

Problem: This lives in dimension $m-n+1$ not $n-1$.

Figure 8: Dual of the DKK triangulation for $s=(1,2,1)$.

Minkowski sums

- Given polytopes P_{1}, \ldots, P_{k} in \mathbb{R}^{n}, their Minkowski sum is the polytope $P_{1}+\ldots+P_{k}:=\left\{x_{1}+\ldots+x_{k} \mid x_{i} \in P_{i}\right\}$.

Minkowski sums

- Given polytopes P_{1}, \ldots, P_{k} in \mathbb{R}^{n}, their Minkowski sum is the polytope $P_{1}+\ldots+P_{k}:=\left\{x_{1}+\ldots+x_{k} \mid x_{i} \in P_{i}\right\}$.
- The Minkowski cells of the sum are $\sum B_{i}$ where B_{i} is the convex hull of a subset of vertices of P_{i}.

Minkowski sums

- Given polytopes P_{1}, \ldots, P_{k} in \mathbb{R}^{n}, their Minkowski sum is the polytope $P_{1}+\ldots+P_{k}:=\left\{x_{1}+\ldots+x_{k} \mid x_{i} \in P_{i}\right\}$.
- The Minkowski cells of the sum are $\sum B_{i}$ where B_{i} is the convex hull of a subset of vertices of P_{i}.
- A mixed subdivision of a Minkowski sum is a collection of Minkowski cells such that their union covers the Minkowski sum and they intersect properly.

Minkowski sums

- Given polytopes P_{1}, \ldots, P_{k} in \mathbb{R}^{n}, their Minkowski sum is the polytope $P_{1}+\ldots+P_{k}:=\left\{x_{1}+\ldots+x_{k} \mid x_{i} \in P_{i}\right\}$.
- The Minkowski cells of the sum are $\sum B_{i}$ where B_{i} is the convex hull of a subset of vertices of P_{i}.
- A mixed subdivision is a collection of Minkowski cells whose union covers the Minkowski sum and they intersect properly.
- A fine mixed subdivision is a minimal mixed subdivision via containment.

Cayley Trick

$\mathcal{C}\left(P_{1}, \ldots, P_{k}\right):=\operatorname{conv}\left(\left\{e_{1}\right\} \times P_{1}, \ldots,\left\{e_{k}\right\} \times P_{k}\right) \subset \mathbb{R}^{k} \times \mathbb{R}^{n}$ is the Cayley embedding of P_{1}, \ldots, P_{k}.

Proposition (The Cayley trick)

The (regular) polytopal subdivisions (resp. triangulations) of $\mathcal{C}\left(P_{1}, \ldots, P_{k}\right)$ are in bijection with the (coherent) mixed subdivisions (resp. fine mixed subdivisions) of $P_{1}+\ldots+P_{k}$.

Flow polytopes are Cayley embeddings

Theorem (GMPTY, 22’)

The s-decreasing trees are in bijection with the maximal cells of a fine mixed subdivision of the Minkowski sum of hypercubes in \mathbb{R}^{n-1} given by

$$
\left(s_{n}+1\right) \square_{n-1}+\sum_{i=1}^{n-1}\left(s_{i}-1\right) \square_{i-1} .
$$

Proof : The flow polytope of G_{s} is a Cayley embedding of hypercubes.

Mixed subdivision of hypercubes

Figure 9: (a) Summands of the Minkowski cell corresponding to $w=3221$. (b) Mixed subdivision of $2 \square_{2}+\square_{1}$ leading to the (1,2,1)-permutahedron.

From the mixed subdivision to a dual polyhedral complex

Problem: This dual does not give explicit coordinates.

Tropicalizing triangulations

A regular subdivision \mathcal{S} of a point configuration \mathcal{A} can be obtained as the lower faces of the points of \mathcal{A} lifted by an admissible height function h.

Credit: Rambau '96
Such lifted configuration corresponds to the tropical polynomial (in the min-plus algebra):

$$
F(x)=\bigoplus_{i \in[m]} h^{i} \odot x^{a^{i}}=\min \left\{h^{i}+\left\langle a^{i}, x\right\rangle \mid i \in[m]\right\}
$$

The tropical polynomial

$$
F(x)=\bigoplus_{i \in[m]} h^{i} \odot x^{a^{i}}=\min \left\{h^{i}+\left\langle a^{i}, x\right\rangle \mid i \in[m]\right\}
$$

gives the tropical hypersurface defined by F, or vanishing locus of F as
$\mathcal{T}(F):=\left\{x \in \mathbb{R}^{d} \mid\right.$ the minimum of $F(x)$ is attained at least twice $\}$.

Theorem (Folklore)

There is a bijection between the k-dimensional cells of \mathcal{S} and the ($n-k$)-dimensional cells of $\mathcal{T}(F)$. The bounded cells of $\mathcal{T}(F)$ corresponds to the interior cells of \mathcal{S}.

Cayley case

When \mathcal{A} is a Cayley embedding, the tropical phenomena described here can be extended to the mixed subdivision obtained after the Cayley trick.

Theorem (GMPTY, 23')

Let s be a composition and h an admissible height function for the DKK traingulation of $\left(G_{s}, \preceq\right)$. The tropical dual of the Cayley mixed subdivision is the polyhedral complex of cells induced by the arrangement of tropical hypersurfaces

$$
\mathcal{H}_{s, h}=\left\{\mathcal{T}\left(F_{t}^{j}\right) \mid j \in[2, n+1], t \in\left[s_{j}-1\right]\right\}
$$

where $F_{t}^{j}(x)=\bigoplus_{\delta \in\{0,1\}^{j-1}}-h(R(j, t, \delta)) \odot x^{\delta}$ and $R(j, t, \delta)$ denotes a route in G_{s}.

Theorem (GMPTY, 23')
The vertices $v(w)$ of the arrangement $\mathcal{H}_{s, h}$ are in bijection with Stirling s-permutations w and have coordinates

$$
v(w)_{a}=\sum_{t=1}^{s_{a}}\left(h\left(l_{w}^{i\left(a^{t}\right)}\right)-h\left(l_{w}^{i\left(a^{t}\right)+1}\right)\right) .
$$

Final realizations

Figure 10: The 1112-permutahedron (left) and the 1222-permutahedron (right) via their tropical realization.

References

- C. Ceballos and V. Pons. "The s-weak order and s-permutahedra". Sém. Lothar. Combin. 82B (2020), Art. 76, 12.
- V. I. Danilov, A. V. Karzanov, and G. A. Koshevoy. "Coherent fans in the space of flows in framed graphs". 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012). Discrete Math. Theor. Comput. Sci. Proc. 2012, pp. 481-490.
- J. De Loera, J. Rambau and F. Santos. "Triangulations: structures for algorithms and applications" (Vol. 25). Springer Science \& Business Media. (2010) Chapter 9.2.
- M. Joswig, "Essentials of tropical combinatorics", vol. 219, American Mathematical Society, 2021.
- K. Mészáros and A. H. Morales. "Volumes and Ehrhart polynomials of flow polytopes". Math. Z. 293.3-4 (2019), pp. 1369-1401. doi.

Thank you!

Theorem

Let s be a composition. Let $\varepsilon>0$ be a small enough real number. Let h be the function that associates to a route $R=\left(e_{t_{k}}^{k}, \ldots, e_{t_{1}}^{1}\right)$ of G_{S} the quantity

$$
h(R)=-\sum_{q=1}^{k-1} \varepsilon^{q}\left(\sum_{j=1}^{k-q}\left(t_{j+q}+\delta_{j}\right)^{2}\right)
$$

where $\delta_{j}=\left\{\begin{array}{ll}0 & \text { if } t_{j}=0, \\ 1 & \text { if } t_{j}=s_{j}\end{array}\right.$ for all $j \in[k-1]$.
Then h is an admissible height function for the DKK triangulation of G_{s}.

