

From combinatorics to non-commutative probability: a Hopf-route in 50 minutes

Yannic VARGAS

Beyond Permutahedra and Associahedra: Geometry, Combinatorics, Algebra, and Probability Weissensee Workshop, 2023

Purpose of this talk: give a survey of some links between notions in *non-commutative probability*, algebra and combinatorics.

"From the Earth to the Moon: A Direct Route in 97 Hours, 20 Minutes", by Jules Verne, 1865

Purpose of this talk: give a survey of some links between notions in *non-commutative probability*, algebra and combinatorics.

Some (open and ongoing) problems will be discussed.

"From the Earth to the Moon: A Direct Route in 97 Hours, 20 Minutes", by Jules Verne, 1865

Yannic VARGAS

- The field of *Free Probability* was created by Dan Voiculescu in the 1980s.
- Voiculescu isolated its central concept of *freeness* or, synonymously, *free independence* in the context of operator algebras.
- Philosophy: investigate the notion of "freeness" in analogy to the concept of "independence" from (classical) probability theory (corresponding notions of free independence, free central limit theorem, free convolution...).
- A combinatorial theory of freeness was developed by Nica and Speicher in the 1990s (lattice of non-crossing partitions).
- Voiculescu discovered freeness also asymptotically for many kinds of random matrices (1991).
- Ebrahimi-Fard and Patras studied non-commutative cumulants as infinitesimal characters.

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 3 / $50\,$

Commutative vs non-commutative probability

D. Voiculescu, R. Speicher, A. Nica

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 50 4 $/\,50$

Classical probability space

A **probability space** (Kolmogorov, 1930's) is given by the following data:

- a set Ω (sample space),
- a collection \mathcal{F} (event space),
- $\blacksquare \ \mathbb{P}: \mathcal{F} \to [0,1] \ (\text{probability function}),$

Andrey Kolmogorov

satisfying several axioms.

Expectation: for every random variable $X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, let

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) \, d\mathbb{P}(\omega).$$

Intuition: replace $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$ by a more general pair (\mathcal{A}, ϕ) .

From combinatorics to non-commutative probability: a Hopf-route in 50 5 / 50 $\,$

A non-commutative probability space is a pair (\mathcal{A},ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(Mat_n(\mathbb{C}), \frac{1}{n}Tr)$, $(Mat_n(\Omega), \phi)$.

A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that

- \mathcal{A} is a unital associative algebra over \mathbb{C} ;
- $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(Mat_n(\mathbb{C}), \frac{1}{n}Tr)$, $(Mat_n(\Omega), \phi)$.

$$\phi(a) := \int_{\Omega} \mathsf{tr}(a(\omega)) \, d\mathbb{P}(\omega)$$

Non-commutative random variable: $a \in \mathcal{A}$

Non-commutative distribution of a:

 $1 < i_1, \dots, i_m < k$

$$\begin{split} \text{moments:} (\phi(\mathfrak{a}), \phi(\mathfrak{a}^2), \phi(\mathfrak{a}^3), \ldots) &\longleftrightarrow \mu_\mathfrak{a} : \mathbb{C}[x] \to \mathbb{C}, \mu(x^i) := \phi(\mathfrak{a}^i) \\ \text{Non-commutative join distribution of } \mathbf{a} = (\mathfrak{a}_1, \ldots, \mathfrak{a}_k) \text{: if} \end{split}$$

$$\mu: \mathbb{C}\langle x_1, \dots, x_k \rangle \to \mathbb{C} \quad , \quad \mu_{\mathbf{a}}(x_{i_1} \cdots x_{i_n}) \coloneqq \varphi(\mathfrak{a}_{i_1} \cdot_{\mathcal{A}} \cdots \cdot_{\mathcal{A}} \mathfrak{a}_{i_n})$$

Non-commutative random variable: $a \in A$

Non-commutative distribution of a:

$$\begin{split} \text{moments:}(\phi(a),\phi(a^2),\phi(a^3),\dots)&\longleftrightarrow\mu_a:\mathbb{C}[x]\to\mathbb{C},\mu(x^i):=\phi(a^i)\\ \text{Non-commutative join distribution of } \mathbf{a}=(a_1,\dots,a_k): \text{ if }\\ 1&\leq i_1,\dots,i_n\leq k, \end{split}$$

$$\mu: \mathbb{C}\langle x_1, \ldots, x_k \rangle \to \mathbb{C} \quad , \quad \mu_{\mathbf{a}}(x_{\mathfrak{i}_1} \cdots x_{\mathfrak{i}_n}) \coloneqq \varphi(\mathfrak{a}_{\mathfrak{i}_1} \cdot_{\mathcal{A}} \cdots \cdot_{\mathcal{A}} \mathfrak{a}_{\mathfrak{i}_n})$$

For example, if $\mathbf{X}=(X_1,\ldots,X_n)\in (L^\infty(\Omega,\mathcal{F},\mathbb{P}))^n,$ then

$$\mathbb{E}[p(\mathbf{X})] = \int_{\mathbb{R}^n} p(x) d\mu_{\mathbf{X}}(x), \, \forall \, p \in \mathbb{C}[x_1, \dots, x_n],$$

where $\mu_{\mathbf{X}}(B) = \mathbb{P}(\{\omega \in \Omega \, : \, \mathbf{X}(\omega) \in B\})$, $B \in \mathcal{B}(\mathbb{R}^n)$.

- A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that
 - \mathcal{A} is a unital associative algebra over \mathbb{C} ;
 - $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.

 $\text{Examples: } (L^{\infty}(\Omega,\mathcal{F},\mathbb{P}),\mathbb{E}), \ \left(\mathsf{Mat}_{n}(\mathbb{C}), \frac{1}{n}\mathsf{Tr}\right), \ (\mathsf{F}(\mathsf{G}),\phi_{\mathsf{G}}).$

Yannic VARGAS

- A non-commutative probability space is a pair (\mathcal{A}, ϕ) such that
 - \mathcal{A} is a unital associative algebra over \mathbb{C} ;
 - $\phi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\phi(1_{\mathcal{A}}) = 1$.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E})$, $(Mat_n(\mathbb{C}), \frac{1}{n}Tr)$, $(F(G), \phi_G)$.

In a (classical) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the notion of independence between two random variables $X, Y : \Omega \to \mathbb{C}$ implies

$$\mathbb{E}(X^m Y^n) = \mathbb{E}(X^m) \mathbb{E}(Y^n).$$

Non-commutative independence

Let (\mathcal{A}, ϕ) be a non-commutative probability space. Consider $\{\mathcal{A}_i\}_{i \in I}$ unital subalgebras of \mathcal{A} . Let $a_1 \in \mathcal{A}_{i_1}, \ldots, a_n \in \mathcal{A}_{i_n}$ such that $i_j \neq i_{j+1}$. The family $\{\mathcal{A}_i\}_{i \in I}$ is

freely independent if

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=0,$$

when $\phi(a_j)=0,$ for all $1\leq j\leq n;$

boolean independent if

$$\phi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=\phi(\mathfrak{a}_1)\cdots\phi(\mathfrak{a}_n);$$

monotone independent if

$$\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_n)=\varphi(\mathfrak{a}_j)\varphi(\mathfrak{a}_1\cdots\mathfrak{a}_{j-1}\cdot\mathfrak{a}_{j+1}\cdots\mathfrak{a}_n),$$

when $i_{j-1} < i_j > i_{j+1}$ (I is totally ordered). From combinatorics to non-c

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 9 / 50

Moment to cumulant relations in (\mathcal{A}, ϕ)

Consider the multilinear functionals

$$\begin{array}{ll} \{r_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} & \{b_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} & \{h_n: \mathcal{A}^n \to \mathbb{C}\}_{n \geq 1} \\ (\text{ Free cumulants }) & \text{'} & (\text{ Boolean cumulants }) & \text{'} & (\text{ Monotone cumulants }) \end{array}$$

defined by

$$\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathsf{NC}(n)} r_{\pi}(a_1, \dots, a_n),$$
$$\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathsf{NC}_{\mathsf{Int}}(n)} b_{\pi}(a_1, \dots, a_n),$$
$$\varphi(a_1 \cdots a_n) = \sum_{\pi \in \mathsf{NC}(n)} \frac{1}{\tau(\pi)!} h_{\pi}(a_1, \dots, a_n).$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 10 / 50

Kurusch Ebrahimi-Fard, Frédéric Patras

K. Ebrahimi-Fard and F. Patras proposed an algebraic model to study cumulants in non-commutative probability theory: several (classical and non-commutative) cumulants can be realized as *infinitesimal characters* from a certain Hopf algebra H.

 $\blacksquare~(\mathcal{A},\phi)$ non-commutative probability space.

- \blacksquare (\mathcal{A},ϕ) non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.

- $\blacksquare~(\mathcal{A},\phi)$ non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.

- $\blacksquare~(\mathcal{A},\phi)$ non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.
- The space $(Hom_{lin}(H, \mathbb{K}), <, >)$ is a dendriform algebra, with * = < + >.

- $\blacksquare~(\mathcal{A},\phi)$ non-commutative probability space.
- $H = T(T_+(A))$ words on non-empty words on A.
- The coproduct Δ in H is *codendriform*: $\Delta = \Delta_{<} + \Delta_{>}$.
- The space $(Hom_{lin}(H, \mathbb{K}), <, >)$ is a dendriform algebra, with * = < + >.
- The linear form ϕ is extended to $\mathsf{T}_+(\mathcal{A})$ by defining to all words $\mathfrak{u}=\mathfrak{a}_1\cdots\mathfrak{a}_n\in\mathcal{A}^{\otimes n}$

$$\varphi(\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_n):=\varphi(\mathfrak{a}_1\cdot_{\mathcal{A}}\mathfrak{a}_2\cdot_{\mathcal{A}}\cdots\cdot_{\mathcal{A}}\mathfrak{a}_n).$$

This is the **multivariate moment** of u. The map φ is then extended multiplicatively to a map $\Phi: T(T_+(\mathcal{A})) \to \mathbb{K}$ with $\Phi(1) := 1$ and

$$\Phi(\mathfrak{u}_1|\cdots|\mathfrak{u}_k):=\varphi(\mathfrak{u}_1)\cdots\varphi(\mathfrak{u}_k).$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 12 / $50\,$

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras (2015, 2018))

Let $\rho,\kappa,\beta\in\mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

 $\Phi = \exp_*(\rho),$

$$\Phi = \varepsilon + \kappa \prec \Phi$$

and

$$\Phi = \epsilon + \Phi \succ \beta.$$

Then, ρ , κ , β correspond to the **monotone cumulants**, free cumulants and boolean cumulants, respectively.

Cumulants as infinitesimal characters

Proposition (Ebrahimi-Fard, Patras (2015, 2018))

Let $\rho,\kappa,\beta\in\mathfrak{g}(\mathcal{A})$ the infinitesimal characters solving

 $\Phi = exp_*(\rho),$

$$\Phi = \varepsilon + \kappa \prec \Phi$$

and

$$\Phi = \epsilon + \Phi \succ \beta.$$

Then, ρ , κ , β correspond to the **monotone cumulants**, free cumulants and boolean cumulants, respectively.

For any word $\mathfrak{u}=\mathfrak{a}_1\cdots\mathfrak{a}_n\in\mathcal{A}^{\otimes n}$, we have

 $h_n(a_1,\ldots,a_n) = \rho(\mathfrak{u}), r_n(a_1,\ldots,a_n) = \kappa(\mathfrak{u}), b_n(a_1,\ldots,a_n) = \beta(\mathfrak{u}).$

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 13 / 50

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,14\,/\,50$

André Joyal, Alain Connes, Olivia Caramello and Laurent Lafforgue, IHES (2015) The theory of *combinatorial species* was introduced by André Joyal in 1980. Species can be seen as a *categorification* of generating functions. It provides a categorical foundation for enumerative combinatorics.

The set of finite graph G[I] with labels in a finite set I satisfies:

(1) If $g_1 \in G[I]$ and $f: I \rightarrow J$ is a bijection, we obtain a graph $g_2 \in G[J]$ after replacing the corresponding labels.

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 16 / 50

The set of graph G[I] with labels in a finite set I satisfies: (1) This defines a function G[f] : G[I] \rightarrow G[J], for every biyection f : I \rightarrow J.

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 17 / $50\,$

The set of graph in G[I] with labels in a finite set I satisfies: (2) If $f_1: I \rightarrow J$ and $f_2: J \rightarrow K$ are biyections, then

 $\mathsf{G}[\mathsf{f}_2\circ\mathsf{f}_1]=\mathsf{G}[\mathsf{f}_2]\circ\mathsf{G}[\mathsf{f}_1]$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 50 18 / 50

The set of graph in G[I] with labels in a finite set I satisfies: (3) $G[id_I] = id_{G[I]}$.

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 19 / $50\,$

A set-species is a functor

$$p: set^{\times} \rightarrow set.$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,20\,/\,50$

A set-species is a functor

$$p: set^{\times} \rightarrow set.$$

A species is a functor

$$\mathsf{p}:\mathsf{set}^ imes o \mathsf{Vec}.$$

The Cauchy product of two species p and q is given by

$$(p \cdot q)[I] = \bigoplus_{I = S \sqcup T} p[S] \otimes q[T].$$

The category of species is symmetric monoidal.

A set-species is a functor

$$p: set^{\times} \rightarrow set.$$

A species is a functor

$$\mathsf{p}:\mathsf{set}^ imes o \mathsf{Vec}.$$

The Cauchy product of two species p and q is given by

$$(\mathbf{p} \cdot \mathbf{q})[\mathbf{I}] = \bigoplus_{\mathbf{I} = S \sqcup T} \mathbf{p}[S] \otimes \mathbf{q}[T].$$

The category of species is symmetric monoidal. We can speak of monoids, comonoids, ..., in species.

$$h[S] \otimes h[T] \xrightarrow{\mu_{S,T}} h[I] \qquad h[I] \xrightarrow{\Delta}$$

Yannic VARGAS

$$h[I] \xrightarrow{\Delta_{S,T}} h[S] \otimes h[T].$$

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 20 / $50\,$

Examples of species

Species E of sets:

$$\mathsf{E}[\mathrm{I}] := \mathbb{K}\{\ast_{\mathrm{I}}\}.$$

Species E_n of n-sets:

$$\mathsf{E}_{\mathsf{n}}[\mathrm{I}] := \begin{cases} \mathbb{K}\{\ast_{\mathrm{I}}\}, & \text{ if } |\mathrm{I}| = \mathsf{n}; \\ (0), & \text{ if } |\mathrm{I}| \neq \mathsf{n}. \end{cases}$$

- Species $X := E_1$ of sets of one element.
- Species **T** of **partitions**.
- Species L of linear orders.
- Species G of graphs:

 $\mathsf{G}[I] := \mathbb{K} \{ \text{ finite graphs with vertices in } I \}.$

Examples of species

- Species B of binary trees.
- Species S of permutations.
- Species Braid of braid hyperplane arrangements.

Examples of species

- Species B of binary trees.
- Species S of permutations.
- Species Braid of braid hyperplane arrangements.

Dream on...

- Species SM of simple maps.
- Species FSM of fully simple maps.

Operations on species

Sum of species

 $(\mathsf{p}+\mathsf{q})[I] := \mathsf{p}[I] \oplus \mathsf{q}[I].$
Operations on species

Sum of species

 $(\mathsf{p}+\mathsf{q})[I] := \mathsf{p}[I] \oplus \mathsf{q}[I].$

Product of species (Cauchy product)

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 50 $23\,/\,50$

Operations on species

Composition of species

$$(\mathsf{p} \circ \mathsf{q})[\mathrm{I}] := \bigoplus_{\pi \in \Pi[\mathrm{I}]} \mathsf{p}[\pi] \otimes \bigotimes_{\mathrm{B} \in \pi} \mathsf{q}[\mathrm{B}].$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 24 / $50\,$

Generating function of a species

To every species **p** it is associated its **exponential generating function**:

$$\mathsf{p}(\mathsf{x}) := \sum_{n \ge 0} \dim(\mathsf{p}[n]) \frac{\mathsf{x}^n}{n!}.$$

We have:

$$(p+q)(x) = p(x) + q(x),$$
$$(p \cdot q)(x) = p(x) \cdot q(x),$$
$$(p \circ q)(x) = p(x) \circ q(x).$$

For the last identity, $q[\emptyset] := (0)$.

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 25 / 50

A labelled binary tree is:

- a single labelled vertex (the root);
- a couple of labelled binary trees, plus the labelled root.

A labelled binary tree is:

- a single labelled vertex (the root);
- a couple of labelled binary trees, plus the labelled root.

This translates as,

 $\mathsf{B}=\mathsf{X}+\mathsf{E}_2\circ\mathsf{B},$

A labelled binary tree is:

- a single labelled vertex (the root);
- a couple of labelled binary trees, plus the labelled root.

This translates as,

$$\mathsf{B}=\mathsf{X}+\mathsf{E}_2\circ\mathsf{B},$$

which implies:

$$\mathsf{B}(\mathbf{x}) = \mathbf{x} + \mathsf{B}(\mathbf{x})^2 / 2.$$

Therefore,

$$\mathsf{B}(x) = 1 - \sqrt{1 - 2x} = \sum_{n \ge 1} 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n - 3) \frac{x^n}{n!}.$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 26 / $50\,$

Marcelo Aguiar, Swapneel Mahajan

Based on Aguiar, M., Mahajan, S. (2013). *Hopf monoids in the category of species*, Hopf algebras and tensor categories, 585, 17-124.

There are functors

$$\begin{split} \mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}: & \text{Hopf monoids in species} \to \mathbb{N}\text{-graded Hopf algebras.} \\ \mathcal{K}(h) &= \mathcal{K}(h) := \bigoplus_{n \geq 0} h[n] \\ \mathcal{K}^{\vee}(h) := \bigoplus_{n > 0} h[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(h) := \bigoplus_{n > 0} h[n]^{\mathfrak{S}_n} \end{split}$$

There are functors

$$\begin{split} \mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}: & \text{Hopf monoids in species} \to \mathbb{N}\text{-graded Hopf algebras.} \\ \mathcal{K}(h) &= \mathcal{K}(h) := \bigoplus_{n \geq 0} h[n] \\ \mathcal{K}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_n} \end{split}$$

Patras-Schocker-Reutenauer:

 $\label{eq:Kh} \begin{array}{l} \mathcal{K}(h): \text{ cosymmetrized bialgebra} \\ \mathcal{K}^{\vee}(h): \text{ symmetrized bialgebra} \end{array}$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 28 / $50\,$

There are functors

$$\begin{split} \mathcal{K}, \overline{\mathcal{K}}, \mathcal{K}^{\vee}, \overline{\mathcal{K}}: & \text{Hopf monoids in species} \to \mathbb{N}\text{-graded Hopf algebras.} \\ \mathcal{K}(h) &= \mathcal{K}(h) := \bigoplus_{n \geq 0} h[n] \\ \mathcal{K}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]_{\mathfrak{S}_n} \quad , \quad \overline{\mathcal{K}}^{\vee}(h) := \bigoplus_{n \geq 0} h[n]^{\mathfrak{S}_n} \end{split}$$

 $\bullet \ \mathcal{K}(\mathsf{h}) \cong \overline{\mathcal{K}}(\mathsf{L} \times \mathsf{h}).$

- If h is finite-dimensional, then $\overline{\mathcal{K}}(h^*) \cong \overline{\mathcal{K}}(h)^*$.
- If h is cocommutative, then so are $\mathcal{K}(h)$ and $\overline{\mathcal{K}}(h)$.
- If h is commutative, so is $\overline{\mathcal{K}}(h)$.

Let p be a species.

Let p be a species. A series s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{I}},$

for each bijection $\sigma: I \to J$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I}\in \mathsf{p}[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_I) = s_J,$

for each bijection $\sigma: I \rightarrow J$.

The space $\mathscr{S}(p)$ of all series of p is a vector space:

$$(s+t)_{I} = s_{I} + t_{I}$$
, $(\lambda \cdot s)_{I} := \lambda s_{I}$,

for $s, t \in \mathscr{S}(p)$ and $\lambda \in \mathbb{K}$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},$

Yannic VARGAS

for each bijection $\sigma: I \to J.$

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

 $\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},$

for each bijection $\sigma: I \to J$.

Let E be the exponential map. A series s of p corresponds to the morphism of species

$$\mathsf{E}
ightarrow \mathsf{p} \ *_{\mathrm{I}} \mapsto \mathsf{s}_{\mathrm{I}},$$

Yannic VARGAS

so $\mathscr{S}(p) \cong Hom_{Sp}(E,p)$.

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 31 / 50

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

$$\mathsf{p}[\sigma](\mathsf{s}_{\mathrm{I}}) = \mathsf{s}_{\mathrm{J}},\tag{1}$$

for each bijection $\sigma: I \to J$.

Let p be a species. A **series** s of p is a collection of elements

 $s_{I} \in p[I],$

one for each finite set I, such that

$$\mathsf{p}[\sigma](s_{\mathrm{I}}) = s_{\mathrm{J}},\tag{1}$$

for each bijection $\sigma: I \to J$.

Property (1) implies that each $s_{[n]}$ is an \mathfrak{S}_n -invariant element of p[n]. In fact,

$$\mathscr{S}(\mathsf{p}) \cong \prod_{n \ge 0} \mathsf{p}[n]^{\mathfrak{S}_n}$$

 $s \mapsto (s_{[n]})_{n \ge 0}.$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 5032/50

The functor ${\mathscr S}$

Given a morphism of species $f:p\to q$ and a series s of p, define f(s) by

$$f(s)_{I} := f_{I}(s_{I}),$$

for every finite set I. As f commutes with bijections, we have

$$\mathsf{q}[\sigma](\mathsf{f}(s)_{\mathrm{I}}) = (\mathsf{q}[\sigma] \circ \mathsf{f}_{\mathrm{I}})(s_{\mathrm{I}}) = (\mathsf{f}_{\mathrm{J}} \circ \mathsf{p}[\sigma])(s_{\mathrm{I}}) = \mathsf{f}_{\mathrm{J}}(s_{\mathrm{J}}) = \mathsf{f}(s)_{\mathrm{J}},$$

for all bijection $\sigma\colon I\to J.$ Then, f(s) is a series of q. This defines a functor

$$\mathscr{S}: \mathsf{Sp} \to \mathsf{Vec}.$$

The functor \mathscr{S} is *braided lax monoidal*: it preserves monoids, commutative monoids and Lie monoids.

Decorated series

Let V be a vector space.

Decorated series

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $\mathsf{E}\to \mathsf{p}.$

Let V be a vector space. Recall that a series of p corresponds to a morphism of species $\mathsf{E}\to \mathsf{p}.$

A V-decorated series, or decorated series, is a morphism of species

 $E_V \rightarrow p$,

where E_V is the exponential decorated exponential given by

$$\mathsf{E}_V[I] := \mathbb{K}\{f: I \to V\}.$$

Let $\mathscr{S}_{V}(p)$ be the space of decorated series.

Decorated series

A series s in $\mathscr{S}_V(\mathsf{p})$ is a collection of elements

 $s_{\mathrm{I},f} \in \mathsf{p}[\mathrm{I}],$

one for each finite set I and for each map $f:I \rightarrow V\text{, such that}$

$$\mathsf{p}[\sigma](s_{\mathrm{I},\mathrm{f}}) = s_{\mathrm{J},\mathrm{f}\circ\sigma^{-1}},$$

for each bijection $\sigma: I \to J$.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P.

Let (\mathcal{A},ϕ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P. As a species, $P = L \circ L_+$.

Let (\mathcal{A}, ϕ) be a non-commutative probability space.

Consider the *ripping and sewing* Hopf monoid P. As a species, $P = L \circ L_+$. Define $\Phi \in \mathscr{S}_{\mathcal{A}}(P^*)$ as follows: if I is a finite set and $f : I \to \mathcal{A}$, let

 $\Phi_{I,f} \in \mathsf{P}^*[I]$

given by

$$\Phi_{\mathrm{I},\mathrm{f}}(w_1w_2\cdots w_n):=\phi(w_1)\cdots\phi(w_n),$$

where for each $w_k = x_1^k \cdots x_r^k \in \mathsf{L}_+[I_k]$,

$$\varphi(w) \coloneqq (\phi \circ f)(x_1^k) \cdots (\phi \circ f)(x_r^k).$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 36 / $50\,$

Let (\mathcal{A}, ϕ) be a non-commutative probability space.

Let (\mathcal{A},ϕ) be a non-commutative probability space. For every species p,

consider the space $C_{\mathcal{A}}(p) := \mathscr{S}_{\mathcal{A}}((L \circ p_+)^*).$

- Classical cumulants: p = X
- Non-commutative cumulants: p = L

Problem 2 : structure on p giving a more general ripping and sewing coproduct on the *free monoid* $L \circ p_+$?

Yannic VARGAS

Let (\mathcal{A},ϕ) be a non-commutative probability space. For every species p,

consider the space $C_{\mathcal{A}}(p) := \mathscr{S}_{\mathcal{A}}((L \circ p_+)^*).$

- Classical cumulants: p = X
- Non-commutative cumulants: p = L

Problem 2 : structure on p giving a more general ripping and sewing coproduct on the *free monoid* $L \circ p_+$?

(In progress: structure of *hereditary species* on p)

• More general notion: $C_h(p) := \mathscr{S}(\mathcal{H}(h, (L \circ p_+)^*)).$

 $C_{\mathsf{h}}(\mathsf{p}) := \mathscr{S}(\mathcal{H}(\mathsf{h},(\mathsf{L} \circ \mathsf{p}_{+})^{*})).$

 $C_{\mathsf{h}}(\mathsf{p}) := \mathscr{S}(\mathcal{H}(\mathsf{h}, (\mathsf{L} \circ \mathsf{p}_{+})^{*})).$

Particular case: p := X, (h, ϕ) a connected bimonoid with

 $\phi_I(x):=\text{dim}_{\mathbb{K}}h[I],$

for all $x \in h[I]$.

 $C_{\mathsf{h}}(\mathsf{p}) := \mathscr{S}(\mathcal{H}(\mathsf{h}, (\mathsf{L} \circ \mathsf{p}_{+})^{*})).$

Particular case: p := X, (h, ϕ) a connected bimonoid with

Yannic VARGAS

 $\phi_I(x):={\sf dim}_{\mathbb K}{\sf h}[I],$

for all $x \in h[I]$. Let $X \vdash I$ be a partition of I. Consider

 $\mathsf{h}(X) := \bigotimes_{B \in X} \mathsf{h}[B].$

 $C_{\mathsf{h}}(\mathsf{p}) := \mathscr{S}(\mathcal{H}(\mathsf{h}, (\mathsf{L} \circ \mathsf{p}_{+})^{*})).$

Particular case: p := X, (h, ϕ) a connected bimonoid with

 $\phi_I(x) := \mathsf{dim}_{\mathbb{K}} h[I],$

for all $x \in h[I]$. Let $X \vdash I$ be a partition of I. Consider

$$\mathsf{h}(X) := \bigotimes_{B \in X} \mathsf{h}[B].$$

The **cumulants** of h are the integers $k_X(h)$ defined by

$$k_{X}(h) = \sum_{Y:Y \ge X} \mu(X,Y) \dim_{\mathbb{K}} h(Y).$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 38 / $50\,$

Classical cumulants from Hopf monoids (Aguiar-Mahajan)

The **cumulants** of h are the integers $k_X(h)$ defined by

$$k_X(h) = \sum_{Y:Y \ge X} \mu(X,Y) \dim_{\Bbbk} h(Y).$$

Classical cumulants from Hopf monoids (Aguiar-Mahajan)

The **cumulants** of h are the integers $k_X(h)$ defined by

$$k_X(h) = \sum_{Y:Y \ge X} \mu(X,Y) \dim_{\mathbb{K}} h(Y).$$

The n-th cumulant is

$$k_n(h) := k_{\{I\}}(h),$$

where |I|=n and $\{I\}$ is the partition of I with one block.

Classical cumulants from Hopf monoids (Aguiar-Mahajan)

The **cumulants** of h are the integers $k_X(h)$ defined by

$$k_X(h) = \sum_{Y:Y \ge X} \mu(X,Y) \dim_{\mathbb{k}} h(Y).$$

The n-th cumulant is

$$\mathsf{k}_{\mathfrak{n}}(\mathsf{h}) := \mathsf{k}_{\{\mathrm{I}\}}(\mathsf{h}),$$

where |I|=n and $\{I\}$ is the partition of I with one block. Therefore,

$$k_n(h) = \sum_{Y \vdash I} \mu(\{I\}, Y) \ dim_{\Bbbk} h(Y).$$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 50 $39\,/\,50$
Classical cumulants from Hopf monoids (Aguiar-Mahajan)

The Möbius function of $\Pi[I]$ satisfies

$$\mu(X,Y) = (-1)^{l(Y) - l(X)} \prod_{B \in X} (n_B - 1)!$$

for $X \leq Y,$ where n_B is the number of blocks of Y that refine the block B of X. Therefore,

$$k_X(\mathsf{h}) = \prod_{\mathsf{B}\in X} k_{|\mathsf{B}|}(\mathsf{h}),$$

Yannic VARGAS

for each partition X of I.

Hopf monoid	Distribution	Moments	Cumulants
L	Exponential of par. 1	n!	(n - 1)!
E	Dirac measure $\delta = 1$	1	$\delta_{n,1}$
Π	Poisson of par. 1	Bell _n	1
Σ	Geometric of par. 1	$OrdBell_n$	$\sum_{k\geq 1}\frac{k^n}{2^k}$

Hopf monoid	Distribution	Moments	Cumulants
L	Exponential of par. 1	n!	(n - 1)!
E	Dirac measure $\delta = 1$	1	$\delta_{n,1}$
Π	Poisson of par. 1	Bell _n	1
Σ	Geometric of par. 1	$OrdBell_n$	$\sum_{k\geq 1} \frac{k^n}{2^k}$

From the formula

$$k_n(h) = \sum_{Y \vdash I} \mu(\{I\}, Y) \dim_{\Bbbk} h(Y),$$

it is not evident that the integers $k_{\mathfrak{n}}(h)$ are non-negative.

Hopf monoid	Distribution	Moments	Cumulants
L	Exponential of par. 1	n!	(n-1)!
E	Dirac measure $\delta = 1$	1	$\delta_{n,1}$
Π	Poisson of par. 1	Bell _n	1
Σ	Geometric of par. 1	$OrdBell_n$	$\sum_{k\geq 1} \frac{k^n}{2^k}$

From the formula

$$k_n(h) = \sum_{Y \vdash I} \mu(\{I\}, Y) \dim_k h(Y),$$

it is not evident that the integers $k_{\mathfrak{n}}(h)$ are non-negative.

Proposition (Aguiar-Mahajan)

For any finite-dimensional cocommutative connected bimonoid ${\sf h},$ the dimension of its primitive part is

$$\dim_{\mathbb{k}} \mathcal{P}(\mathsf{h})[\mathrm{I}] = \mathsf{k}_{|\mathrm{I}|}(\mathsf{h}).$$

Free and boolean cumulants of h

The **free cumulants** of h are the integers $c_n(h)$ defined by

$$c_n(h) = \sum_{\pi \in \mathsf{NC}(n)} \mu(\{I\}, \pi) \dim_{\Bbbk} h(\pi).$$

Free and boolean cumulants of h

The **free cumulants** of h are the integers $c_n(h)$ defined by

$$c_n(h) = \sum_{\pi \in \mathsf{NC}(n)} \mu(\{I\}, \pi) \dim_{\Bbbk} h(\pi).$$

The **boolean cumulants** of h are the integers $b_n(h)$ defined by

$$b_{n}(h) = \sum_{\pi \in \mathsf{NC}_{\mathsf{Int}}(\pi)} \mu(\{I\}, \pi) \dim_{\mathbb{K}} h(\pi).$$

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 42 / $50\,$

Free and boolean cumulants of h

The **free cumulants** of h are the integers $c_n(h)$ defined by

$$c_{n}(h) = \sum_{\pi \in \mathsf{NC}(n)} \mu(\{I\}, \pi) \dim_{\mathbb{K}} h(\pi).$$

The **boolean cumulants** of h are the integers $b_n(h)$ defined by

$$b_{n}(h) = \sum_{\pi \in \mathsf{NC}_{\mathsf{Int}}(n)} \mu(\{I\}, \pi) \dim_{\Bbbk} h(\pi).$$

Question: are these integers non-negative? What conditions on h?

Yannic VARGAS

Given a species h, the *ordinary, type* and *exponential* generating functions of h are, respectively,

$$\begin{split} \mathsf{E}_{\mathsf{h}}(z) &:= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, \frac{z^{n}}{n!}, \quad \mathsf{T}_{\mathsf{h}}(z) = \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n]_{\mathfrak{S}_{n}} \, z^{n} \\ \mathsf{O}_{\mathsf{h}}(z) &= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, z^{n}. \end{split}$$

Given a species h, the *ordinary*, *type* and *exponential* generating functions of h are, respectively,

$$\begin{split} \mathsf{E}_{\mathsf{h}}(z) &:= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, \frac{z^{n}}{n!}, \quad \mathsf{T}_{\mathsf{h}}(z) = \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n]_{\mathfrak{S}_{n}} \, z^{n} \\ \mathsf{O}_{\mathsf{h}}(z) &= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, z^{n}. \end{split}$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1 - 1/O_h(z) \in \mathbb{N}[[z]]$.

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 50 $43\,/\,50$

Given a species h, the *ordinary*, *type* and *exponential* generating functions of h are, respectively,

$$\begin{split} \mathsf{E}_{\mathsf{h}}(z) &:= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, \frac{z^{n}}{n!}, \quad \mathsf{T}_{\mathsf{h}}(z) = \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n]_{\mathfrak{S}_{n}} \, z^{n} \\ \mathsf{O}_{\mathsf{h}}(z) &= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, z^{n}. \end{split}$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1 - 1/O_h(z) \in \mathbb{N}[[z]]$.

The coefficient of z^n in $1-1/O_h(z) \in \mathbb{N}[[z]]$ is precisely $b_n(h)$.

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in 50 $43\,/\,50$

Given a species h, the *ordinary*, *type* and *exponential* generating functions of h are, respectively,

$$\begin{split} \mathsf{E}_{\mathsf{h}}(z) &:= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, \frac{z^{n}}{n!}, \quad \mathsf{T}_{\mathsf{h}}(z) = \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n]_{\mathfrak{S}_{n}} \, z^{n} \\ \mathsf{O}_{\mathsf{h}}(z) &= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, z^{n}. \end{split}$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1 - 1/O_h(z) \in \mathbb{N}[[z]]$.

The coefficient of z^n in $1-1/O_h(z) \in \mathbb{N}[[z]]$ is precisely $b_n(h)$.

No assumptions on cocommutativity.

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 43 / $50\,$

Given a species h, the *ordinary*, *type* and *exponential* generating functions of h are, respectively,

$$\begin{split} \mathsf{E}_{\mathsf{h}}(z) &:= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, \frac{z^{n}}{n!}, \quad \mathsf{T}_{\mathsf{h}}(z) = \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n]_{\mathfrak{S}_{n}} \, z^{n} \\ \mathsf{O}_{\mathsf{h}}(z) &= \sum_{n \ge 0} \dim_{\mathbb{K}} \mathsf{h}[n] \, z^{n}. \end{split}$$

Proposition (Aguiar-Mahajan)

If h is connected and finite-dimensional, then $1 - 1/O_h(z) \in \mathbb{N}[[z]]$.

The coefficient of z^n in $1-1/O_h(z) \in \mathbb{N}[[z]]$ is precisely $b_n(h)$.

No assumptions on cocommutativity. What about $c_n(\boldsymbol{h})?$

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $50\,$ 43 / 50

Questions and work in progress

- An algebraic model for several notions of non-commutative independences was presented by Ebrahimi-Fard and Patras. It involves infinitesimal characters on a certain Hopf algebra.
- Understanding this approach in terms of species and algebraic structures in the monoidal category of species (monoids, comonoids, lie monoids, bimonoids) might give a better insight of the combinatorics behind moment-to-cumulant formale.

Questions and work in progress

- An algebraic model for several notions of non-commutative independences was presented by Ebrahimi-Fard and Patras. It involves infinitesimal characters on a certain Hopf algebra.
- Understanding this approach in terms of species and algebraic structures in the monoidal category of species (monoids, comonoids, lie monoids, bimonoids) might give a better insight of the combinatorics behind moment-to-cumulant formale.
- Other (analytical) notions in non-commutative probability are rich in combinatorics: central limit theorems, infinite divisibility, free entropy,...).

Yannic VARGAS

Questions and work in progress

- An algebraic model for several notions of non-commutative independences was presented by Ebrahimi-Fard and Patras. It involves infinitesimal characters on a certain Hopf algebra.
- Understanding this approach in terms of species and algebraic structures in the monoidal category of species (monoids, comonoids, lie monoids, bimonoids) might give a better insight of the combinatorics behind moment-to-cumulant formale.
- Other (analytical) notions in non-commutative probability are rich in combinatorics: central limit theorems, infinite divisibility, free entropy,...).

Yannic VARGAS

What's next?

Geometrical notion of independence(s)?

Polytope	Hopf monoid	Independence
Permutahedron	Π	Classical
Associahedron	F	Monotone
Cyclohedron	С	Conditional monotone

Joint work with Cesar Ceballos, Adrián Celestino and Franz Lehner.

Yannic VARGAS

Thanks!

Yannic VARGAS

From combinatorics to non-commutative probability: a Hopf-route in $546\,/\,50$

References I

- Marcelo Aguiar and Swapneel Mahajan.
 Hopf monoids in the category of species.
 Hopf algebras and tensor categories, 585:17–124, 2013.
- Octavio Arizmendi and Adrián Celestino. Monotone cumulant-moment formula and schróder trees. arXiv preprint arXiv:2111.02179, 2021.
- Kurusch Ebrahimi-Fard and Frédéric Patras. A group-theoretical approach to conditionally free cumulants. arXiv preprint arXiv:1806.06287, 2018.

References II

Hillary Einziger.

Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions. PhD thesis, The George Washington University, 2010.

Takahiro Hasebe and Franz Lehner. Cumulants, spreadability and the campbell-baker-hausdorff series. arXiv preprint arXiv:1711.00219, 2017.

Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon.

Free cumulants, schroder trees, and operads.

Advances in Applied Mathematics, 88:92–119, 2017.

References III

 Matthieu Josuat-Vergès, Frédéric Menous, Jean-Christophe Novelli, and Jean-Yves Thibon.
 Free cumulants, schróder trees, and operads.
 Advances in Applied Mathematics, 88:92–119, 2017.

Franz Lehner, Jean-Christophe Novelli, and Jean-Yves Thibon. Combinatorial hopf algebras in noncommutative probabilility. *arXiv preprint arXiv:2006.02089*, 2020.

🔋 Naofumi Muraki.

The five independences as natural products.

Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6(03):337–371, 2003.

References IV

Yannic Vargas.

Cumulant to moment relations, antipode formulas and mobius inversion.

In preparation, 2022.

Dan Voiculescu.

Symmetries of some reduced free product c*-algebras. In Operator algebras and their connections with topology and ergodic theory, pages 556–588. Springer, 1985.