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Flow polytopes

A flow graph G = (V. E) is a connected acyclic digraph on vertex set V = {1,2, ..., n}
with edge multiset E, with edges directed toward larger vertices.
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Flow polytopes

A flow graph G = (V. E) is a connected acyclic digraph on vertex set V = {1,2, ..., n}
with edge multiset E, with edges directed toward larger vertices.
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A flow of size one on G is a tuple (xc)ccg(g) of non-negative real numbers such that
flow is preserved at each vertex, i.e.

Z Xe = Z xe =1, and Z Xe — Z Xxe=0forve[2,n-1].

ecOut(1) eclIn(n) eclIn(v) ecOut(v)
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Flow polytopes

A flow graph G = (V. E) is a connected acyclic digraph on vertex set V = {1,2, ..., n}
with edge multiset E, with edges directed toward larger vertices.
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A flow of size one on G is a tuple (xc)ccg(g) of non-negative real numbers such that
flow is preserved at each vertex, i.e.

Z Xe = Z xe =1, and Z Xe — Z Xxe=0forve[2,n-1].

ecOut(1) eclIn(n) eclIn(v) ecOut(v)

Definition

A flow polytope F is the set of all flows of size one in G
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Flow polytopes
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@ Vertices of F correspond with routes in G (paths from source to sink).

F¢ = conv{xg | R is a route in G}
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Flow polytopes
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@ Vertices of F correspond with routes in G (paths from source to sink).

F¢ = conv{xg | R is a route in G}

@ Dimension:

n—1

dim(F¢) = Y (|0ut(i)| - 1) = |E(G)| - [V(G)| +1

i=1
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Examples of flow polytopes

Graph Flow polytope Normalized Volume
n-simplex
-7:G - An 1

n+ 1 edges
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Examples of flow polytopes

Graph

n+ 1 edges

e

n+ 3 vertices
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Flow polytope Normalized Volume

n-simplex
Fe =14,

caracol polytope 12
Cat(n) = 7n+1( ")
]:car(n)

Chan—Robbins—Yuen polytope

] cat(h
Fkais = CRY i=1

Zeilberger '99
(No combinatorial proof known)
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Triangulations

Definition

A triangulation 7 of a d-dimensional lattice polytope P is a finite collection of
d-simplices Si, ..., S, such that

(i) P=U",Si; and
(i) SiNS; is a common face of S; and S; for any pair S;, S; € 7.

A triangulation is unimodular if every d-simplex has (normalized) volume 1.
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Triangulations

Definition

A triangulation 7 of a d-dimensional lattice polytope P is a finite collection of
d-simplices Si, ..., S, such that

() P = UL, Si and
(i) SiNS; is a common face of S; and S; for any pair S;, S; € 7.

A triangulation is unimodular if every d-simplex has (normalized) volume 1.

Definition

The dual graph of a triangulation is the graph on the simplices Sy, ..., Sp, with edges
between simplices sharing a common face of codimension one.
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Framed triangulations of flow polytopes

Theorem (Danilov—Karzanov—Koshevoy, 2012)

The maximal sets of coherent routes in a framing of G determine simplices in a regular
unimodular triangulation of Fg.

A framing is a collection of linear orders on in(i) and out(/) for each i € V(G).
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Framed triangulations of flow polytopes
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Framed triangulations of flow polytopes

Theorem Danilov—Karzanov—Koshevoy, 2012

The maximal sets of coherent routes in a framing of G determine simplices in a regular
unimodular triangulation of Fg.
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Framed triangulations of flow polytopes

Theorem Danilov—Karzanov—Koshevoy, 2012

The maximal sets of coherent routes in a framing of G determine simplices in a regular
unimodular triangulation of Fg.
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The v-caracol flow polytope

Definition

Let v be a lattice path and let w be the number of valleys in 7 = EvN.
The v-caracol graph car(v) is the graph on w -+ 2 vertices constructed as follows.
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The v-caracol flow polytope

Definition

Let v be a lattice path and let w be the number of valleys in 7 = EvN.
The v-caracol graph car(v) is the graph on w -+ 2 vertices constructed as follows.

E steps
1
3
V=
N steps 1 12 1

Fear(v) = v-caracol flow polytope

Mészdros—Morales [2019]

4w
vol Fear(r) = Cat(v) := det (( +§5‘:—1" k))1<ij<b—1
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Framed triangulations of Fc,.(,)

Theorem (B.—Gonzilez D'Leén—Mayorga Cetina—Yip, 2021)

The Hasse diagrams of the following lattices appear as dual graphs in framed
triangulations of Fear(y).

(1) The v-Tamari lattice.

(2) The principal order ideal generated by v in Young's lattice.
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Other framings?

Current work with Cesar Ceballos v = NENENENE
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Other framings?

Current work with Cesar Ceballos v = NENENENE

CLEy

We know for general v that the dual graphs contain Hasse diagrams of:

@ alt v-Tamari lattices of Ceballos—Cheneviere.

@ ‘“cross-Tamari” lattices
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Alt v-Tamari and cross-Tamari lattices
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Alt v-Tamari and cross-Tamari lattices
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Alt v-Tamari and cross-Tamari lattices
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Alt v-Tamari and cross-Tamari lattices

Incompatible Compatible Compatible v-tree
q q q q
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Alt v-Tamari and cross-Tamari lattices
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Alt v-Tamari and cross-Tamari lattices
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Cross-Tamari: Permute rows and columns!
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Alt v-Tamari and cross-Tamari lattices

Current work with Cesar Ceballos
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Alt v-Tamari and cross-Tamari lattices
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Can the lattice structure be obtained from the framed triangulation?
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Alt v-Tamari and cross-Tamari lattices

Current work with Cesar Ceballos v = NENENENE
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Can the lattice structure be obtained from the framed triangulation?

@ Yes! In progress.
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6.

Thank you!
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