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Flow polytopes

A flow graph G = (V ,E) is a connected acyclic digraph on vertex set V = {1, 2, ..., n}
with edge multiset E , with edges directed toward larger vertices.
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A flow of size one on G is a tuple (xe)e∈E(G) of non-negative real numbers such that
flow is preserved at each vertex,

i.e.∑
e∈Out(1)

xe =
∑

e∈In(n)

xe = 1, and
∑

e∈In(v)

xe −
∑

e∈Out(v)

xe = 0 for v ∈ [2, n − 1].

Definition

A flow polytope FG is the set of all flows of size one in G .
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Flow polytopes
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FG

Vertices of FG correspond with routes in G (paths from source to sink).

FG = conv{xR | R is a route in G}

Dimension:

dim(FG ) =
n−1∑
i=1

(|Out(i)| − 1) = |E(G)| − |V (G)|+ 1
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Examples of flow polytopes

Graph Flow polytope

...

n + 1 edges

n-simplex

FG = ∆n

n + 3 vertices

caracol polytope

Fcar(n)

Kn+3

Chan–Robbins–Yuen polytope

FKn+3 = CRYn

Normalized Volume

1

Cat(n) = 1
n+1

(
2n
n

)

n∏
i=1

Cat(i)

Zeilberger ’99
(No combinatorial proof known)
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Triangulations

Definition

A triangulation T of a d-dimensional lattice polytope P is a finite collection of
d-simplices S1, . . . ,Sn such that

(i) P =
⋃n

i=1 Si ; and

(ii) Si ∩ Sj is a common face of Si and Sj for any pair Si , Sj ∈ T .

A triangulation is unimodular if every d-simplex has (normalized) volume 1.

Definition

The dual graph of a triangulation is the graph on the simplices S1, . . ., Sn, with edges
between simplices sharing a common face of codimension one.
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Framed triangulations of flow polytopes

Theorem (Danilov–Karzanov–Koshevoy, 2012)

The maximal sets of coherent routes in a framing of G determine simplices in a regular
unimodular triangulation of FG .

A framing is a collection of linear orders on in(i) and out(i) for each i ∈ V (G).

i

2
1

3
2
1

Routes P and Q are coherent if Pi and Qi are ordered the same as iP and iQ for any
shared vertex i .

i

Pi

iP

Qi iQ
coherent:

2
1

3
2
1

i

Pi

iQ

Qi iP

not coherent:
2
1

3
2
1

i

Pi

iP

Qi iQ2
1

3
2
1

i

Pi

iQ

Qi iP2
1

3
2
1
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The ν-caracol flow polytope

Definition

Let ν be a lattice path and let w be the number of valleys in ν = EνN.
The ν-caracol graph car(ν) is the graph on w + 2 vertices constructed as follows.

ν =

N steps 1 1 2 1

E steps

1

3

1

2 1 2 3 4 5 6 7

Fcar(ν) = ν-caracol flow polytope

Mészáros–Morales [2019]

volFcar(ν) = Cat(ν) := det
((1+∑b−j

k=1
νk

1+j−i

))
1≤i,j≤b−1
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Framed triangulations of Fcar(ν)

Theorem (B.–González D’León–Mayorga Cetina–Yip, 2021)

The Hasse diagrams of the following lattices appear as dual graphs in framed
triangulations of Fcar(ν).

(1) The ν-Tamari lattice.

(2) The principal order ideal generated by ν in Young’s lattice.

A new realization of the ν-Tamari complex

of Ceballos–Padrol–Sarmiento What about other framings?
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Other framings?

Current work with Cesar Ceballos ν = NENENENE

We know for general ν that the dual graphs contain Hasse diagrams of:

alt ν-Tamari lattices of Ceballos–Chenevière.

“cross-Tamari” lattices

Matias von Bell (TU Graz) May 15th, 2023 11 / 14
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Alt ν-Tamari and cross-Tamari lattices

p

q
Incompatible

q NE of p

p

q
Compatible

q

p

Compatible

ν-tree

p

−→

Rotation

q

ν-Tamari

Alt ν-Tamari Alt ν-Tamari

Cross-Tamari: Permute rows and columns! −→
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Alt ν-Tamari and cross-Tamari lattices

Current work with Cesar Ceballos ν = NENENENE

Can the lattice structure be obtained from the framed triangulation?

Yes! In progress.
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Thank you!
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